如圖,在四棱錐A-ABCD中,底面ABCD是正方形,其他四個(gè)側(cè)面都是等邊三角形,AC與BD的交點(diǎn)為O,E為側(cè)棱SC上一點(diǎn).

(1)當(dāng)E為側(cè)棱SC的中點(diǎn)時(shí),求證:SA∥平面BDE;

(2)求證:平面BDE⊥平面SAC;

(3)當(dāng)二面角E-BD-C的大小為45°時(shí),試判斷點(diǎn)E在SC上的位置,并說明理由.

 

 

 

【答案】

(Ⅰ)連接,由條件可得.

 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052419072060934953/SYS201205241910162500299313_DA.files/image003.png">平面,平面,

  所以∥平面.      

(Ⅱ)法一:證明:由已知可得,,中點(diǎn),

所以,

又因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052419072060934953/SYS201205241910162500299313_DA.files/image010.png">是正方形,所以.

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052419072060934953/SYS201205241910162500299313_DA.files/image012.png">,所以.

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052419072060934953/SYS201205241910162500299313_DA.files/image014.png">,所以平面平面.   -

(Ⅱ)法二:證明:由(Ⅰ)知,.

建立如圖所示的空間直角坐標(biāo)系.

設(shè)四棱錐的底面邊長為2,

,,,

,,.

所以,.

設(shè)),由已知可求得.

所以,.

設(shè)平面法向量為,

  

,得

易知是平面的法向量.

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052419072060934953/SYS201205241910162500299313_DA.files/image038.png">,

所以,所以平面平面.          -------------------(8分)

(Ⅲ)解:設(shè)),由(Ⅱ)可知,

平面法向量為.

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052419072060934953/SYS201205241910162500299313_DA.files/image040.png">,

所以是平面的一個(gè)法向量.

由已知二面角的大小為.

所以

所以,解得.

所以點(diǎn)的中點(diǎn).                        

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊答案