對于集合M,N,定義M-N={x|x∈M且x∉N},M+N=(M-N)∪(N-M),設(shè)數(shù)學(xué)公式,B={y|y=1-2x,x>0},求A+B.

解:由,得
由B={y|y=1-2x,x>0},得B={y|y<0}
∴A-B=[0,2)∪(2,+∞),B-A=(-∞,-
∴A+B=(A-B)∪(B-A)=(-∞,-)∪[0,2)∪(2,+∞)
分析:先分別求出集合A于集合B,然后根據(jù)新的運算法則求出A-B,B-A,最后再利用并集的定義求出(A-B)∪(B-A)即可.
點評:本題題目比較新穎,通過定義新的運算進行求解,屬于創(chuàng)新題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于集合M、N,定義M-N={x|x∈M,且x∉N},M△N=(M-N)∪(N-M),設(shè)A={t|t=x2-3x,x∈R},B={x|y=lg(-x)},則A△B=( 。
A、(-
9
4
,0]
B、[-
9
4
,0)
C、(-∞,-
9
4
)∪[0,+∞)
D、(-∞,-
9
4
]∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于集合M,N,定義M-N={x|x∈M且x∉N},M*N=(M-N)∪(N-M),設(shè)A={x|x=t2-2t,t∈R},B={x|y=lg(-x)},則A*B=
{x|x≥0或x<-1}
{x|x≥0或x<-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于集合M,N,定義M-N={x|x∈M,且x∉N},M⊕N=(M-N)∪(N-M),設(shè)A={x|x≥-
9
4
},B={x|x<0},則A⊕B=
{x|x≥0或x<-
9
4
}
{x|x≥0或x<-
9
4
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于集合M,N,定義M-N={x|x∈M且x∉N},M+N=(M-N)∪(N-M),設(shè)A={x|y=
4x+9
x-2
}
,B={y|y=1-2x,x>0},求A+B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于集合M、N,定義M-N={x|x∈M}且x∉N,M⊕N=(M-N)∪(N-M),設(shè)A={y|y=3xx∈R},B={y|y=-(x-1)2+2;x∈R},則A⊕B=( 。

查看答案和解析>>

同步練習(xí)冊答案