下列命題:
(1)若不等式|x-4|<a的解集非空,則必有a>0;
(2)函數(shù)cosa=0,則sina=1;
(3)函數(shù)y=f(1+x)與函數(shù)y=f(1-x)的圖象關(guān)于直線x=1對稱;
(4)若f(x+a)=f(a-x),則函數(shù)y=f(x)的圖象關(guān)于直線x=a對稱.
其中錯(cuò)誤的命題的序號是
(2)(3)
(2)(3)
(把你認(rèn)為錯(cuò)誤的命題的序號都填上).
分析:(1)利用絕對值不等式的解集判斷;
(2)利用公式cos2α+sin2α=1求解;
(3)根據(jù)函數(shù)y=f(a+x)與函數(shù)y=f(b-x)的圖象關(guān)于直線x=
b-a
2
對稱;
(4)根據(jù)函數(shù)滿足f(a+x)=f(b-x),則其圖象關(guān)于直線x=
a+b
2
對稱.
解答:解:(1)由于|x-4|的最小值等于0,所以當(dāng)a≤0時(shí),不等式|x-4|<a的解集是空集,如果不等式|x-4|<a的解集非空,必有a>0,故(1)正確;
(2)由于函數(shù)cosa=0,則sina=1或-1,故(2)錯(cuò)誤;
(3)因?yàn)楹瘮?shù)y=f(a+x)與函數(shù)y=f(b-x)的圖象關(guān)于直線x=
b-a
2
對稱
所以函數(shù)y=f(x+2)的圖象與函數(shù)y=f(3-x)的圖象關(guān)于直線x=0對稱,故(3)錯(cuò)誤;
(4)根據(jù)函數(shù)滿足f(a+x)=f(b-x),則其圖象關(guān)于直線x=
a+b
2
對稱,
則函數(shù)y=f(x)的圖象關(guān)于直線x=a對稱,故(4)正確.
故答案為 (2)(3)
點(diǎn)評:本題考查了不同命題的真假判斷,要求熟練掌握相關(guān)的知識點(diǎn)以及各知識的綜合應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,給出下列命題:
(1)若m⊥α,n⊥β且m⊥n,則α⊥β;
(2)若m∥α,n∥β且m∥n,則α∥β;
(3)若m⊥α,n∥β且m⊥n,則α⊥β;
(4)若m⊥α,n∥β且m∥n,則α∥β.
其中正確命題的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5、給定下列命題:
(1)若一直線垂直于一個(gè)平面,則此直線垂直于平面內(nèi)所有直線;
(2)若一直線平行于一個(gè)平面,則此直線平行于平面內(nèi)無數(shù)條直線;
(3)若一直線與一個(gè)平面不垂直,則此直線與平面內(nèi)所有直線不垂直;
(4)若一直線與一個(gè)平面不平行,則此直線與平面內(nèi)所有直線不平行,其中錯(cuò)誤命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列命題:
(1)“若m>0,則方程x2+2x-m=0有實(shí)數(shù)根”的逆否命題;
(2)“x=1”是“x2-3x+2=0”的充分不必要條件;
(3)命題“?x,y∈R,如果xy=0,則x=0或y=0”的否命題是“?x,y∈R,如果xy≠0,則x≠0且y≠0”:
(4)“¬p”為真是“p∧q“為假的必要不充分條件
(5)全稱命題“?x∈R,x2+x+3>0”的否定是“?x0∈R,x02+x0+3≤0”
其中真命題的序號是
①②③⑤
①②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α和β為不重合的兩個(gè)平面,給出下列命題:
(1)若α內(nèi)的兩條相交直線分別平行于β內(nèi)的兩條直線,則α平行于β;
(2)若α外一條直線l與α內(nèi)的一條直線平行,則l和α平行;
(3)設(shè)α和β相交于直線l,若α內(nèi)有一條直線垂直于l,則α和β垂直;
(4)直線l與α垂直的充分必要條件是l與α內(nèi)的兩條直線垂直.
上面命題中,正確命題的個(gè)數(shù)是
2
2
  個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b為不重合的兩條直線,α,β為不重合的兩個(gè)平面,給出下列命題:
(1)若a?α,b?α,a,b是異面直線,那么b∥α;(2)若a∥α且b∥α,則a∥b;
(3)若a?α,b∥α,a,b共面,那么a∥b;(4)若a⊥α且a⊥β,則α∥β.
上面命題中,所有真命題的序號是
(3)(4)
(3)(4)

查看答案和解析>>

同步練習(xí)冊答案