如圖,多面體ABCDS中,面ABCD為矩形,SD⊥AD,SD⊥AB,且AB=2AD,SD=
3
AD,
(1)求證:平面SDB⊥平面ABCD;
(2)求二面角A-SB-D的大小.
(1)∵SD⊥AD,SD⊥AB,AD∩AB=A
∴SD⊥平面ABCD,
又∵SD⊆平面SBD,
∴平面SDB⊥平面ABCD.…(5分)
(2)由題可知DS、DA、DC兩兩互相垂直.
如圖建立空間直角坐標(biāo)系D-xyz
設(shè)AD=a,則S(
3
a,0,0),A(0,a,0),B(0,a,2a),C(0,0,2a),…(6分)
DS
=(
3
a,0,0),
DB
=(0,a,2a),…(7分)
設(shè)面SBD的一個法向量為
n
=(x,y,-1)
n
DS
=0
n
DB
=0
,即
3
ax=0
ay-2az=0

解得
n
=(0,2,-1)…(8分)
又∵
AB
=(0,0,2a),
SA
=(-
3
a,a,0),
設(shè)面SAB的一個法向量為
m
=(1,y,z),
m
AB
=0
m
SA
=0
,即
2az=0
-
3
a+ay=0

解出
m
=(1,
3
,0),…(10分)
cos<
m
n
>=
m
n
|
m
|•|
n
|
=
15
15

故所求的二面角為arccos
15
15
…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C-AB-D的余弦值為
3
3
,M是AC的中點,則EM,DE所成角的余弦值等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,四面體A-BCD的四個面全等,且AB=AC=2
3
,BC=4,則以BC為棱,以面BCD與面BCA為面的二面角的大小為( 。
A.arccos
1
3
B.arccos
3
3
C.
π
2
D.
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

三棱錐P-ABC的兩側(cè)面PAB,PBC都是邊長為2的正三角形,AC=
3
,則二面角A-PB-C的大小為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分別是AB、PD的中點.
(Ⅰ)求證:AF平面PEC;
(Ⅱ)求PC與平面ABCD所成角的正弦值;
(Ⅲ)求二面角P-EC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知ACDE是直角梯形,且EDAC,平面ACDE⊥平面ABC,∠BAC=∠ACD=90°,AB=AC=AE=2,ED=
1
2
AB
,P是BC的中點.
(Ⅰ)求證:DP平面EAB;
(Ⅱ)求平面EBD與平面ABC所成銳二面角大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,PA=AB=1,PD與平面ABCD所成角是30°,點F是PB的中點,點E在矩形ABCD的邊BC上移動.
(Ⅰ)證明:無論點E在邊BC的何處,都有PE⊥AF;
(Ⅱ)當(dāng)CE等于何值時,二面角P-DE-A的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以等腰直角三角形ABC斜邊BC上的高AD為折痕,將△ABC折成二面角C-AD-B等于______時,在折成的圖形中,△ABC為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

邊長為4的正四面體P-ABC中,E為PA的中點,則平面EBC與平面ABC所成銳二面角的余弦值為______.

查看答案和解析>>

同步練習(xí)冊答案