分析:(1)根據(jù)誘導公式,將分子、分母的各項化簡,約分即可得到原式的值.
(2)根據(jù)對數(shù)的運算性質(zhì)和對數(shù)恒等式,將原式的各項化簡,再求它們的代數(shù)和,即可得到原式的值.
解答:解:(1)∵sin(2π-α)=-sinα,sin(π+α)=-sinα,cos(-π-α)=-cosα
cos(
+α)=-sinα,sin(3π-α)=sinα,cos(π-α)=-cosα
∴
sin(2π-α)sin(π+α)cos(-π-α) |
cos(+α)sin(3π-α)cos(π-α) |
=
-sinα•(-sinα)•(-cosα) |
-sinα•sinα•(-cosα) |
=-1
(2)∵6.25=2.5
2,
=10
-2,
=
e,1+log
23=log
26
∴
log2.56.25+lg+ln+21+log23=
log2.52.52+lg10-2+lne+2log26=2+(-2)+
+6=
點評:本題給出三角函數(shù)式和含有對數(shù)的式子,要我們化簡求值.著重考查了三角函數(shù)的誘導公式和對數(shù)的運算性質(zhì)、對數(shù)恒等式等知識,屬于基礎(chǔ)題.