A. | 2x-3y=0 | B. | 3x-2y=0或x+y-5=0 | ||
C. | x+y-5=0 | D. | 2x-3y=0或x+y-5=0 |
分析 分兩種情況考慮,第一:當(dāng)所求直線與兩坐標(biāo)軸的截距不為0時(shí),設(shè)出該直線的方程為x+y=a,把已知點(diǎn)坐標(biāo)代入即可求出a的值,得到直線的方程;第二:當(dāng)所求直線與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線的方程為y=kx,把已知點(diǎn)的坐標(biāo)代入即可求出k的值,得到直線的方程,綜上,得到所有滿足題意的直線的方程.
解答 解:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時(shí),設(shè)該直線的方程為x+y=a,
把(2,3)代入所設(shè)的方程得:a=5,則所求直線的方程為x+y=5即x+y-5=0;
②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線的方程為y=kx,
把(2,3)代入所求的方程得:k=$\frac{3}{2}$,則所求直線的方程為y=$\frac{3}{2}$x即3x-2y=0.
綜上,所求直線的方程為:3x-2y=0或x+y-5=0.
故選:B.
點(diǎn)評(píng) 此題考查學(xué)生會(huì)根據(jù)條件設(shè)出直線的截距式方程和點(diǎn)斜式方程,考查了分類討論的數(shù)學(xué)思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,0) | B. | (1,1) | C. | $(\sqrt{2\;},\;\sqrt{2})$ | D. | (2,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com