已知A={1,2,3},B={x∈R|x2-ax+1=0,a∈A},則A∩B=B時(shí),a=________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第三章第1課時(shí)練習(xí)卷(解析版) 題型:解答題
如果點(diǎn)P(sinθ·cosθ,2cosθ)位于第三象限,試判斷角θ所在的象限;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第七章第1課時(shí)練習(xí)卷(解析版) 題型:解答題
已知橢圓具有性質(zhì):若M、N是橢圓C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記為kPM、kPN,那么kPM與kPN之積是與點(diǎn)P位置無關(guān)的定值.試對(duì)雙曲線=1寫出具有類似特性的性質(zhì),并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第一章第2課時(shí)練習(xí)卷(解析版) 題型:填空題
設(shè)全集I=R,已知集合M=,N={x|x2+x-6=0}.
(1)求(∁IM)∩N;
(2)記集合A=(∁IM)∩N,已知集合B={x|a-1≤x≤5-a,a∈R},若B∪A=A,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第一章第2課時(shí)練習(xí)卷(解析版) 題型:解答題
已知f(x)=x+-3,x∈[1,2].
(1)當(dāng)b=2時(shí),求f(x)的值域;
(2)若b為正實(shí)數(shù),f(x)的最大值為M,最小值為m,且滿足M-m≥4,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第一章第1課時(shí)練習(xí)卷(解析版) 題型:解答題
已知A={a+2,(a+1)2,a2+3a+3}且1∈A,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第一章第1課時(shí)練習(xí)卷(解析版) 題型:填空題
已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},則B中元素的個(gè)數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1達(dá)標(biāo)演練模塊檢測練習(xí)卷(解析版) 題型:填空題
如圖所示,四邊形ABCD內(nèi)接于⊙O,AD∶BC=1∶2,AB=35,PD=40,則過點(diǎn)P的⊙O的切線長是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1達(dá)標(biāo)檢測第1講練習(xí)卷(解析版) 題型:填空題
在△ABC中,D是AB的中點(diǎn),過點(diǎn)D作DE∥BC,交AC于點(diǎn)E,若DE=4,則BC=________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com