20.復(fù)數(shù)2+i的實(shí)部與復(fù)數(shù)1-2i的虛部的和為(  )
A.0B.2-2iC.3-iD.1+3i

分析 利用復(fù)數(shù)的實(shí)部與復(fù)數(shù)的虛部的定義即可得出.

解答 解:復(fù)數(shù)2+i的實(shí)部與復(fù)數(shù)1-2i的虛部的和=2-2=0.
故選:A.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的實(shí)部與復(fù)數(shù)的虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知定義在R上的函數(shù)f(x)滿足:
①f(1)=2; ②當(dāng)x>0時(shí),f(x)>1; ③對(duì)任意的x,y∈R,都有f(x+y)=f(x)•f(y).
(1)求證:f(0)=1,且對(duì)任意x<0時(shí),0<f(x)<1;
(2)求證:f(x)在R上是單調(diào)遞增函數(shù);
(3)求滿足f(3x-x2)>4的所有x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xoy中,直線l經(jīng)過點(diǎn)P(-3,0),其傾斜角為α,以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,與直角坐標(biāo)系xoy取相同的長(zhǎng)度單位,建立極坐標(biāo)系.設(shè)曲線C的極坐標(biāo)方程為ρ2-2ρcosθ-3=0.
(1)若直線l與曲線C有公共點(diǎn),求傾斜角α的取值范圍;
(2)設(shè)M(x,y)為曲線C上任意一點(diǎn),求x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=x2-2x+3的頂點(diǎn)坐標(biāo)為(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)函數(shù)$f(x)=ax-\frac{x}$,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為7x-4y-12=0,則a+b=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某市交管部門對(duì)一路段限速60km/h,為調(diào)查違章情況,對(duì)經(jīng)過該路段的300輛汽車進(jìn)行檢測(cè),將所得數(shù)據(jù)按[40,50),[50.60),[60,70),[70,80)(所有車輛的車速均在[40,80]內(nèi))分成四組,繪制成如圖所示的頻率分布直方圖.
(1)若用分層抽樣的方法,從這300輛車中抽取20輛,則違章車有多少輛?其中多少輛車的車速不低于70km/h?
(2)用此次檢測(cè)結(jié)果估計(jì)全市車輛的違章情況,若隨機(jī)抽取3輛車.
(i)求這3輛車中違章車輛數(shù)ξ的分布列及期望;
(ii)假如這3輛車都是違章車輛,從中隨機(jī)抽取1輛,求其車速不低于70km.h的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.同時(shí)具備以下性質(zhì):(1)最小正周期為π;(2)圖象關(guān)于x=$\frac{π}{3}$對(duì)稱;(3)在[-$\frac{π}{6}$,$\frac{π}{3}$]上是增函數(shù)的是(  )
A.y=sin($\frac{x}{2}$+$\frac{π}{6}$)B.y=cos(2x+$\frac{π}{3}$)C.y=sin(2x-$\frac{π}{6}$)D.y=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)平面α與平面β相交于直線m,直線a在平面α內(nèi),直線b在平面β內(nèi),且b⊥m,則“α⊥β”是“a⊥b”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知$f(x)=ln\frac{1}{x}+3xf'(2)$,則f'(2)=( 。
A.$\frac{1}{4}$B.$-\frac{1}{4}$C.2D.-2

查看答案和解析>>

同步練習(xí)冊(cè)答案