在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離與定直線l:x=-1的距離相等.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)過(guò)點(diǎn)F作傾斜角為45°的直線m交軌跡E于點(diǎn)A,B,求△AOB的面積.
分析:(1)先設(shè)P(x,y),由拋物線定義知點(diǎn)P的軌跡E為拋物線,寫(xiě)出其標(biāo)準(zhǔn)方程即可;
(2)l:y=x-1,代入y2=4x,消去x,得到關(guān)于y的一元二次方程,再設(shè)A(x1,y1),B(x2,y2),求得A、B兩點(diǎn)間的垂直距離|y1-y2|,后即可由三角形的面積公式得出△AOB的面積,這里只須求出兩點(diǎn)的垂直的距離乘以線段OF的長(zhǎng)度即可.
解答:解:(1)設(shè)P(x,y),
由拋物線定義知點(diǎn)P的軌跡E為拋物線,
其方程為:y2=4x.
(2)l:y=x-1,代入y2=4x,消去x,得y2-4y-4=0,
設(shè)A(x1,y1),B(x2,y2),則y 1,2=2±2
2

∴|y1-y2|=4
2

∴△AOB的面積:
1
2
×OF×| y1 -y2|

=
1
2
×1×4
2
=2
2
點(diǎn)評(píng):本題主要考查了拋物線的定義,以及設(shè)而不求的思想方法、方程思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過(guò)坐標(biāo)原點(diǎn)O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個(gè)交點(diǎn)到橢圓兩焦點(diǎn)的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點(diǎn),點(diǎn)P在圓C上,且滿足PF=4,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,若焦點(diǎn)在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰州三模)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設(shè)直線AC與BD的交點(diǎn)為P,求動(dòng)點(diǎn)P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•東莞一模)在平面直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設(shè)橢圓C的上下頂點(diǎn)分別為A1,A2,Q是橢圓C上異于A1,A2的任一點(diǎn),直線QA1,QA2分別交x軸于點(diǎn)S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案