6.下列所給出的賦值語句中正確的是( 。
A.-5=xB.x=y=1C.y=-yD.x+y=1

分析 根據(jù)賦值語句的格式,逐一分析四個(gè)答案,可得結(jié)論.

解答 解:賦值語句中賦值號(hào)左邊為變量名,故A錯(cuò)誤;D錯(cuò)誤;
賦值語句不能同進(jìn)給多個(gè)變量賦同一值,故B錯(cuò)誤;
C表示將變量y的值變成原來的相反數(shù),再賦給變量y,故C正確;
故選:C

點(diǎn)評 本題考查的知識(shí)點(diǎn)是賦值語句,熟練掌握賦值語句的格式,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}滿足an+1=qan+2q-2(q為常數(shù)),若a3,a4,a5∈{-5,-2,-1,7},則a1=-2或-$\frac{17}{9}$或79.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,已知圓C經(jīng)過A(0,2),O(0,0),D(t,0)(t>0)三點(diǎn),M是線段AD上的動(dòng)點(diǎn),l1,l2是過點(diǎn)B(1,0)且互相垂直的兩條直線,其中l(wèi)1交y軸于點(diǎn)E,l2交圓C于P、Q兩點(diǎn).
(1)若t=|PQ|=6,求直線l2的方程;
(2)若t是使|AM|≤2|BM|恒成立的最小正整數(shù),求三角形EPQ的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2sin2($\frac{π}{4}$+x)-$\sqrt{3}$cos2x-1,x∈R.
(1)若函數(shù)h(x)=f(x+t)的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對稱,且t∈(0,$\frac{π}{2}$),求t的值;
(2)若銳角△ABC中,角A滿足h(A)=1,求($\sqrt{3}$-1)sinB+$\sqrt{2}$sinC取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知焦點(diǎn)在x軸上的橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1(b>0),F(xiàn)1,F(xiàn)2是它的兩個(gè)焦點(diǎn),若橢圓上的點(diǎn)到焦點(diǎn)距離的最大值與最小值的差為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)經(jīng)過右焦點(diǎn)F2的直線l與橢圓相交于A、B兩點(diǎn),且$\overrightarrow{{F}_{2}A}$+2$\overrightarrow{{F}_{2}B}$=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=sin(ωx+φ)(φ>0),(-π<ϕ<0)的一段圖象如圖所示,則ϕ=(  )
A.$-\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{π}{4}$D.$-\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知A={x|x2≤1},B={x|x2-2x>0},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)在(0,+∞)上是減函數(shù)的是( 。
A.y=x2B.y=-x2C.y=-2x2+3x-1D.y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知直三棱柱ABC-A1B1C1的各棱長都是4,E是BC的中點(diǎn),點(diǎn)F在側(cè)棱CC1上,且CF=1,求證:EF⊥A1C.

查看答案和解析>>

同步練習(xí)冊答案