【題目】在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入,已知研發(fā)投入 (十萬元)與利潤 (百萬元)之間有如下對應數(shù)據(jù):
2 | 3 | 4 | 5 | 6 | |
2 | 4 | 5 | 6 | 7 |
若由資料知對呈線性相關關系。試求:
(1)線性回歸方程;
(2)估計時,利潤是多少?
附:利用“最小二乘法”計算a,b的值時,可根據(jù)以下公式:
科目:高中數(shù)學 來源: 題型:
【題目】已知多面體如圖所示,底面為矩形,其中平面, .若, , 分別是, , 的中點,其中.
(Ⅰ)證明: ;
(Ⅱ)若二面角的余弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若無窮數(shù)列滿足: ,對于,都有(其中為常數(shù)),則稱具有性質(zhì)“”.
(Ⅰ)若具有性質(zhì)“”,且, , ,求;
(Ⅱ)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , ,判斷是否具有性質(zhì)“”,并說明理由;
(Ⅲ)設既具有性質(zhì)“”,又具有性質(zhì)“”,其中, , 互質(zhì),求證: 具有性質(zhì)“”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“城中觀!笔墙陙韲鴥(nèi)很多大中型城市內(nèi)澇所致的現(xiàn)象,究其原因,除天氣因素、城市規(guī)劃等原因外,城市垃圾雜物也是造成內(nèi)澇的一個重要原因.暴雨會沖刷城市的垃圾雜物一起進入下水道,據(jù)統(tǒng)計,在不考慮其它因素的條件下,某段下水道的排水量V(單位:立方米/小時)是雜物垃圾密度x(單位:千克/立方米)的函數(shù).當下水道的垃圾雜物密度達到2千克/立方米時,會造成堵塞,此時排水量為0;當垃圾雜物密度不超過0.2千克/立方米時,排水量是90立方米/小時;研究表明,0.2≤x≤2時,排水量V是垃圾雜物密度x的一次函數(shù).
(1)當0≤x≤2時,求函數(shù)V(x)的表達式;
(2)當垃圾雜物密度x為多大時,垃圾雜物量(單位時間內(nèi)通過某段下水道的垃圾雜物量,單位:千克/小時)f(x)=xV(x)可以達到最大,求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四名同學根據(jù)各自的樣本數(shù)據(jù)研究變量之間的相關關系,并求得回歸直線方程,分別得到以下四個結論:( )
①與負相關且. ②與負相關且
③與正相關且 ④與正相關且
其中正確的結論的序號是( )
A. ①② B. ②③ C. ①④ D. ③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個結論中:
(1)如果兩個函數(shù)都是增函數(shù),那么這兩個函數(shù)的積運算所得函數(shù)為增函數(shù);
(2)奇函數(shù)f(x)在[0,+∞)上是增函數(shù),則f(x)在R上為增函數(shù);
(3)既是奇函數(shù)又是偶函數(shù)的函數(shù)只有一個;
(4)若函數(shù)f(x)的最小值是a,最大值是b,則f(x)值域為[a,b].
其中正確結論的序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】輪船從某港口將一些物品送到正航行的輪船上,在輪船出發(fā)時,輪船位于港口北偏西且與相距20海里的處,并正以30海里的航速沿正東方向勻速行駛,假設輪船沿直線方向以海里/小時的航速勻速行駛,經(jīng)過小時與輪船相遇.
(1)若使相遇時輪船航距最短,則輪船的航行速度大小應為多少?
(2)假設輪船的最高航速只能達到30海里/小時,則輪船以多大速度及什么航行方向才能在最短時間與輪船相遇,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且Sn=2n2+n,n∈N,數(shù)列{bn}滿足an=4log2bn+3,n∈N.
(1)求an,bn;
(2)求數(shù)列{anbn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com