已知焦距為的雙曲線的焦點在x軸上,且過點P .
(Ⅰ)求該雙曲線方程 ;
(Ⅱ)若直線m經(jīng)過該雙曲線的右焦點且斜率為1,求直線m被雙曲線截得的弦長.
(1) ;(2)|AB|="6" 。

試題分析:(1)設(shè)雙曲線方程為(a,b>0)
左右焦點F1、F2的坐標(biāo)分別為(-2,0)(2,0)           1分
則|PF1|-|PF2|=2=2,所以=1,            ,3分
又c=2,b=                             5分
所以方程為                       6分
(2)直線m方程為y=x-2                        7分
聯(lián)立雙曲線及直線方程消y得2 x2 +4x-7=0                     9分
設(shè)兩交點         x1+x2=-2,    x1x2=-3.5        10分
由弦長公式得|AB|=6                          12分
點評:中檔題,求圓錐曲線的標(biāo)準(zhǔn)方程,往往利用定義或曲線的幾何性質(zhì),確定a,b,c,e等。涉及直線與圓錐曲線的位置關(guān)系問題,往往聯(lián)立方程組,應(yīng)用韋達定理,簡化解題過程。本題直接利用弦長公式,計算較為簡便。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線的焦點為F,準(zhǔn)線與x軸的交點為A.點C在拋物線E上,以C為圓心,為半徑作圓,設(shè)圓C與準(zhǔn)線交于不同的兩點M,N.

(I)若點C的縱坐標(biāo)為2,求;
(II)若,求圓C的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的兩焦點是橢圓上一點且的等差中項,則此橢圓的標(biāo)準(zhǔn)方程為               。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的對稱軸為坐標(biāo)軸,焦點是(0,),(0,),又點在橢圓上.
(1)求橢圓的方程;
(2)已知直線的斜率為,若直線與橢圓交于、兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點與橢圓的右焦點重合,拋物線的頂點在坐標(biāo)原點,過點的直線與拋物線交于A,B兩點,
(1)寫出拋物線的標(biāo)準(zhǔn)方程 (2)求⊿ABO的面積最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點為,點為拋物線上的動點,點為其準(zhǔn)線上的動點,當(dāng)為等邊三角形時,其面積為
A.B.4C.6D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點為,點是拋物線上的一點,且其縱坐標(biāo)為4,
(1)求拋物線的方程;
(2)設(shè)點是拋物線上的兩點,的角平分線與軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線過點,求弦的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點B(0,1),點C(0,—3),直線PB、PC都是圓的切線(P點不在y軸上).
(I)求過點P且焦點在x軸上拋物線的標(biāo)準(zhǔn)方程;
(II)過點(1,0)作直線與(I)中的拋物線相交于M、N兩點,問是否存在定點R,使為常數(shù)?若存在,求出點R的坐標(biāo)與常數(shù);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓軸負半軸交于點,為橢圓第一象限上的點,直線交橢圓于另一點,橢圓左焦點為,連接于點D。
(1)如果,求橢圓的離心率; 
(2)在(1)的條件下,若直線的傾斜角為且△ABC的面積為,求橢圓的標(biāo)準(zhǔn)方程。

查看答案和解析>>

同步練習(xí)冊答案