已知二項(xiàng)式(
x
-
2
x
7展開式的第4項(xiàng)與第5項(xiàng)之和為零,那么x等于( 。
A、1
B、
2
C、2
D、46
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:根據(jù)第4項(xiàng)與第5項(xiàng)之和為零,可得
C
3
7
•(-2)3x
1
2
+
C
4
7
•(-2)4x-
1
2
=0,由此求得x的值.
解答: 解:由于二項(xiàng)式(
x
-
2
x
7展開式的通項(xiàng)公式為Tr+1=
C
r
7
•(-2)rx
7-2r
2
,
再根據(jù)第4項(xiàng)與第5項(xiàng)之和為零,可得
C
3
7
•(-2)3x
1
2
+
C
4
7
•(-2)4x-
1
2
=0,
求得x=2,
故選:C.
點(diǎn)評:本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,已知a1=p>0,且an+1•an=n2+3n+2,n∈N*
(1)若數(shù)列{an}為等差數(shù)列,求p的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程是
x=4+
4
5
t
y=-3+
3
5
t
(t∈R),則l在y軸上的截距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(
2
x2
-
x
2
)6
的展開式中的常數(shù)項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=
3
sin2x+cos2x-1的圖象向右平移
π
6
個(gè)單位,所得函數(shù)圖象的一個(gè)對稱中心是( 。
A、(0,-1)
B、(
π
3
,0)
C、(
π
12
,0)
D、(-
12
,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=
1
2
n2+
11
2
n
.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=11,b1+b2+…+b9=153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=
3
(2an-11)(2bn-1)
,數(shù)列{cn}的前n項(xiàng)和為Tn,求使不等式Tn
k
57
對一切n∈N*都成立的最大正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}(公差不為零)和等差數(shù)列{bn},如果關(guān)于x的方程9x2-(a1+a2+…a9)x+b1+b2+…b9=0有解,那么以下九個(gè)方程x2-a1x+b1=0,x2-a2x+b2=0,x2-a3x+b3=0…,x2-a9x+b9=0中,無解的方程最多有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=xn+1(n∈N*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則log2013x1+log2013x2+…+log2013x2012的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在R上的偶函數(shù),且滿足f(x)=f(x+3),f(2)=0,則方程f(x)=0在區(qū)間(0,6)內(nèi)解的個(gè)數(shù)至少是( 。
A、5B、4C、3D、2

查看答案和解析>>

同步練習(xí)冊答案