若復(fù)數(shù)z滿足(1+i)z=i,則復(fù)數(shù)z的虛部為(  )
A、
1
2
B、
1
2
i
C、1
D、i
考點:復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)的有關(guān)概念,即可得到結(jié)論.
解答: 解:∵(1+i)z=i,
∴z=
i
1+i
=
i(1-i)
(1+i)(1-i)
=
i+1
2
=
1
2
+
1
2
i
,
故復(fù)數(shù)z的虛部為
1
2
,
故選:A
點評:本題主要考查復(fù)數(shù)的有關(guān)概念和運算,利用復(fù)數(shù)的四則運算是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,則“x≥1”是“
1
x
≤1”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知2弧度的圓心角所對的弦長為2,那么此圓心角所夾扇形的面積為( 。
A、
1
sin1
B、
1
sin21
C、
1
1-cos2
D、tan1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx+1,其中實數(shù)k隨機取自區(qū)間[-2,1],則對于?x∈[-1,1],都有f(x)≥0恒成立的概率為( 。
A、
1
2
B、
2
3
C、
3
5
D、
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對于正項數(shù)列{an}滿足am+n=am•an(m,n∈N*),若a2=9,則log3a1+log3a2+…+log3a12=( 。
A、40B、66C、78D、156

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,四邊形ABCD是正方形,CD=PD,∠ADP=90°,∠CDP=120°,E,F(xiàn),G分別為PB,BC,AP的中點.
(Ⅰ)求證:平面EFG∥平面PCD;
(Ⅱ)求二面角D-EF-B的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+2x2-ax,對于任意實數(shù)x恒有f′(x)≥2x2+2x-4,
(1)求實數(shù)a的取值范圍;
(2)當(dāng)a最大時,關(guān)于x的方程f(x)=k+x有三個不同的根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-(2a+1)x+2lnx
(1)若曲線y=f(x)在x=1和x=4處的切線相互平行,求a的值;
(2)試討論f=f(x)的單調(diào)性;
(3)設(shè)g(x)=x2-2x,對任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x-a|+5x,其中實數(shù)a>0.
(Ⅰ)當(dāng)a=3時,求不等式f(x)≥4x+6的解集;
(Ⅱ)若不等式f(x)≤0的解集為{x|x≤-2},求a的值.

查看答案和解析>>

同步練習(xí)冊答案