分析:(1)由題意對于任意實數x
1,x
2等式恒成立,故可采用賦值法求解;(2)先證明{f(n)}是以1為首項,2為公差的等差數列,由此得
an=,從而可求S
n,再證{b
n}是等比數列從而可求T
n;
(3)設F(n)=a
n+1+a
n+2+…+a
2n證明其單調減,從而有
F(n)>F(2)=,所以
>[log(x+1)-log(9x2-1)+1],解不等式,可得x的取值范圍.
解答:解:(1)令x
1=x
2=0,f(0)=f(x
0)+2f(0),f(x
0)=-f(0)
令x
1=1,x
2=0,f(x
0)=f(x
0)+f(1)+f(0),f(1)=-f(0),∴f(x
0)=f(1)
∵f(x)單調,∴x
0=1
(2)f(1)=1,令x
1=n,x
2=1,f(n+1)=f(n)+f(1)+f(1)=f(n)+2
∴f(n+1)-f(n)=2(n∈N
*),∴{f(n)}是以1為首項,2為公差的等差數列,∴f(n)=2n-1(n∈N
*)
∴
an=S
n=a
1a
2+a
2a
3+…+a
na
n+1 | ∵f(1)=f(+)=f()+f()+f(1) | ∴f()=0,b1=f()+1 |
| |
∵
f()=f(+)=f()+f()+f(1)=2f()+1∴
2bn+1=2f()+2=f()+1=bn∴
bn=()n-1Tn=()0()1+()1()2+…+()n-1()n=
+()3+…+()2n-1=
=[1-()n](3)令F(n)=a
n+1+a
n+2+…+a
2nF(n+1)-F(n)=a2n+1+a2n+2-an+1=+->0∴n≥2,n∈N
*時,
F(n)>F(n-1)>…>F(2)=∴
>[log(x+1)-log(9x2-1)+1]即
log(x+1)-log(9x2-1)<2?解得
-<x<-或<x<1 點評:本題考查抽象函數的求值問題,一般采用賦值法解決,求數列的和,關鍵是求出其通項,再利用相應的求和公式,不等式中的恒成立問題,往往相應借助于函數的單調性解決.綜合性較強.