已知各項(xiàng)均為非負(fù)整數(shù)的數(shù)列A0∶a0,a1,…,an(n∈N*),滿(mǎn)足a0=0,a1+…+an=n.若存在最小的正整數(shù)k,使得ak=k(k≥1),則可定義變換T,變換T將數(shù)列A0變?yōu)門(mén)(A0)∶a0+1,a1+1,…,ak-1+1,0,ak+1,…,an.設(shè)Ai+1=T(Ai),i=0,1,2….

(Ⅰ)若數(shù)列A0:0,1,1,3,0,0,試寫(xiě)出數(shù)列A5;若數(shù)列A4:4,0,0,0,0,試寫(xiě)出數(shù)列A0;

(Ⅱ)證明存在數(shù)列A0,經(jīng)過(guò)有限次T變換,可將數(shù)列A0變?yōu)閿?shù)列;

(Ⅲ)若數(shù)列A0經(jīng)過(guò)有限次T變換,可變?yōu)閿?shù)列.設(shè)Sm=am+am+1+…+an,m=1,2,…,n,求證am=Sm-[](m+1),其中[]表示不超過(guò)的最大整數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•朝陽(yáng)區(qū)一模)已知各項(xiàng)均為非負(fù)整數(shù)的數(shù)列A0:a0,a1,…,an(n∈N*),滿(mǎn)足a0=0,a1+…+an=n.若存在最小的正整數(shù)k,使得ak=k(k≥1),則可定義變換T,變換T將數(shù)列A0變?yōu)門(mén)(A0):a0+1,a1+1,…,ak-1+1,0,ak+1,…,an.設(shè)Ai+1=T(Ai),i=0,1,2….
(Ⅰ)若數(shù)列A0:0,1,1,3,0,0,試寫(xiě)出數(shù)列A5;若數(shù)列A4:4,0,0,0,0,試寫(xiě)出數(shù)列A0;
(Ⅱ)證明存在數(shù)列A0,經(jīng)過(guò)有限次T變換,可將數(shù)列A0變?yōu)閿?shù)列n,
0,0,…,0
n個(gè)
;
(Ⅲ)若數(shù)列A0經(jīng)過(guò)有限次T變換,可變?yōu)閿?shù)列n,
0,0,…,0
n個(gè)
.設(shè)Sm=am+am+1+…+an,m=1,2,…,n,求證am=Sm-[
Sm
m+1
](m+1)
,其中[
Sm
m+1
]
表示不超過(guò)
Sm
m+1
的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京市朝陽(yáng)區(qū)2012屆高三3月第一次綜合練習(xí)數(shù)學(xué)理科試題 題型:044

已知各項(xiàng)均為非負(fù)整數(shù)的數(shù)列A0∶a0,a1,…,an(n∈N*),滿(mǎn)足a0=0,a1+…+an=n.若存在最小的正整數(shù)k,使得ak=k(k≥1),則可定義變換T,變換T將數(shù)列A0變?yōu)閿?shù)列T(A0)∶a0+1,a1+1,…,ak-1+1,0,ak+1,…,an.設(shè)Ai+1=T(Ai),i=0,1,2….

(Ⅰ)若數(shù)列A0∶0,1,1,3,0,0,試寫(xiě)出數(shù)列A5;若數(shù)列A4∶4,0,0,0,0,試寫(xiě)出數(shù)列A0;

(Ⅱ)證明存在唯一的數(shù)列A0,經(jīng)過(guò)有限次T變換,可將數(shù)列A0變?yōu)閿?shù)列;

(Ⅲ)若數(shù)列A0,經(jīng)過(guò)有限次T變換,可變?yōu)閿?shù)列.設(shè)Sm=am+am+1+…+an,m=1,2,…,n,求證am=Sm-[](m+1),其中[]表示不超過(guò)的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市朝陽(yáng)區(qū)高三3月第一次綜合練習(xí)理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知各項(xiàng)均為非負(fù)整數(shù)的數(shù)列 ,滿(mǎn)足,.若存在最小的正整數(shù),使得,則可定義變換,變換將數(shù)列變?yōu)閿?shù)列.設(shè)

  (Ⅰ)若數(shù)列,試寫(xiě)出數(shù)列;若數(shù)列,試寫(xiě)出數(shù)列

  (Ⅱ)證明存在唯一的數(shù)列,經(jīng)過(guò)有限次變換,可將數(shù)列變?yōu)閿?shù)列;

  (Ⅲ)若數(shù)列,經(jīng)過(guò)有限次變換,可變?yōu)閿?shù)列.設(shè),,求證,其中表示不超過(guò)的最大整數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知各項(xiàng)均為非負(fù)整數(shù)的數(shù)列A:a,a1,…,an(n∈N*),滿(mǎn)足a=0,a1+…+an=n.若存在最小的正整數(shù)k,使得ak=k(k≥1),則可定義變換T,變換T將數(shù)列A變?yōu)門(mén)(A):a+1,a1+1,…,ak-1+1,0,ak+1,…,an.設(shè)Ai+1=T(Ai),i=0,1,2….
(Ⅰ)若數(shù)列A:0,1,1,3,0,0,試寫(xiě)出數(shù)列A5;若數(shù)列A4:4,0,0,0,0,試寫(xiě)出數(shù)列A
(Ⅱ)證明存在數(shù)列A,經(jīng)過(guò)有限次T變換,可將數(shù)列A變?yōu)閿?shù)列;
(Ⅲ)若數(shù)列A經(jīng)過(guò)有限次T變換,可變?yōu)閿?shù)列.設(shè)Sm=am+am+1+…+an,m=1,2,…,n,求證,其中表示不超過(guò)的最大整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年北京市朝陽(yáng)區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知各項(xiàng)均為非負(fù)整數(shù)的數(shù)列A:a,a1,…,an(n∈N*),滿(mǎn)足a=0,a1+…+an=n.若存在最小的正整數(shù)k,使得ak=k(k≥1),則可定義變換T,變換T將數(shù)列A變?yōu)門(mén)(A):a+1,a1+1,…,ak-1+1,0,ak+1,…,an.設(shè)Ai+1=T(Ai),i=0,1,2….
(Ⅰ)若數(shù)列A:0,1,1,3,0,0,試寫(xiě)出數(shù)列A5;若數(shù)列A4:4,0,0,0,0,試寫(xiě)出數(shù)列A;
(Ⅱ)證明存在數(shù)列A,經(jīng)過(guò)有限次T變換,可將數(shù)列A變?yōu)閿?shù)列;
(Ⅲ)若數(shù)列A經(jīng)過(guò)有限次T變換,可變?yōu)閿?shù)列.設(shè)Sm=am+am+1+…+an,m=1,2,…,n,求證,其中表示不超過(guò)的最大整數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案