【題目】在海上進(jìn)行工程建設(shè)時(shí),一般需要在工地某處設(shè)置警戒水域;現(xiàn)有一海上作業(yè)工地記為點(diǎn),在一個(gè)特定時(shí)段內(nèi),以點(diǎn)為中心的1海里以內(nèi)海域被設(shè)為警戒水域,點(diǎn)正北海里處有一個(gè)雷達(dá)觀測(cè)站,某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)北偏東且與點(diǎn)相距10海里的位置,經(jīng)過12分鐘又測(cè)得該船已行駛到點(diǎn)北偏東且與點(diǎn)相距海里的位置.

1)求該船的行駛速度(單位:海里/小時(shí));

2)若該船不改變航行方向繼續(xù)行駛.試判斷它是否會(huì)進(jìn)入警戒水域(點(diǎn)與船的距離小于1海里即為進(jìn)入警戒水域),并說明理由.

【答案】1海里/小時(shí);(2)該船不改變航行方向則會(huì)進(jìn)入警戒水域,理由見解析.

【解析】

1)建立直角坐標(biāo)系,首先求出位置與位置的距離,然后除以經(jīng)過的時(shí)間即可求出船的航行速度;

(2)求出位置與位置所在直線方程,求出位置與直線的距離與1海里對(duì)比即可.

1)如圖建立平面直角坐標(biāo)系:設(shè)一個(gè)單位長(zhǎng)度為1海里,

則坐標(biāo)中,,,

再由方位角可求得:,

所以,

又因?yàn)?/span>12分鐘=0.2小時(shí),

(海里/小時(shí)),

所以該船行駛的速度為海里/小時(shí);

2)直線的斜率為,

所以直線的方程為:

,

所以點(diǎn)到直線的距離為,

即該船不改變航行方向行駛時(shí)離點(diǎn)的距離小于1海里,

所以若該船不改變航行方向則會(huì)進(jìn)入警戒水域.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知M,N是焦點(diǎn)為F的拋物線y2=2px(p>0)上兩個(gè)不同的點(diǎn),線段MN的中點(diǎn)A的橫坐標(biāo)為.

(1)|MF|+|NF|的值;

(2)p=2,直線MNx軸交于點(diǎn)B,求點(diǎn)B的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱ABCA1B1C1中(側(cè)棱與底面垂直的棱柱),AC=BC=1,∠ACB=90°,AA1,D A1B1的中點(diǎn).

(1)求證:C1D平面AA1B1B

(2)當(dāng)點(diǎn)F BB1上的什么位置時(shí),AB1平面C1DF ?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高二年級(jí)組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當(dāng)的學(xué)生選擇自行打車,自行打車的平均時(shí)間為 (單位:分鐘) ,而乘坐定制公交的平均時(shí)間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:

(1)當(dāng)在什么范圍內(nèi)時(shí),乘坐定制公交的平均時(shí)間少于自行打車的平均時(shí)間?

(2)求該校學(xué)生參加考試平均時(shí)間的表達(dá)式:討論的單調(diào)性,并說明其實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4sinθ.

(Ⅰ)寫出直線l和曲線C的普通方程;

(Ⅱ)已知點(diǎn)P為曲線C上的動(dòng)點(diǎn),求P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x3+ax2+bx+cxx1時(shí)都取得極值,求a,b的值與函數(shù)fx)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為正方形, 平面, , 上一點(diǎn),且.

(1)求證: 平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求上的最小值;

(2)若關(guān)于的不等式有且只有三個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知六棱錐PABCDEF的底面是正六邊形,PA⊥平面ABC,PAAB,則下列結(jié)論正確的是_____.(填序號(hào))①PBAD;②平面PAB⊥平面PBC;③直線BC∥平面PAE;④sinPDA

查看答案和解析>>

同步練習(xí)冊(cè)答案