函數(shù)f(x)=ax+
1
x+b
+
1
x+b+1
+
1
x+b+2
,其中a≠0
,下列四個(gè)敘述中正確的是( 。
分析:求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,分別進(jìn)行排除判斷.
解答:解:函數(shù)的導(dǎo)數(shù)為f'(x)=a-[
1
(x+b)2
+
1
(x+b+1)2
+
1
(x+b+2)2
],
若a<0,
則f'(x)<0,此時(shí)函數(shù)f(x)單調(diào)遞減,此時(shí)函數(shù)f(x)最多有一個(gè)零點(diǎn),∴B錯(cuò)誤.
當(dāng)b>0,a<0時(shí),此時(shí)函數(shù)f(x)單調(diào)遞減,此時(shí)函數(shù)f(x)最多有一個(gè)零點(diǎn),∴C錯(cuò)誤
當(dāng)b<0,a<0時(shí),此時(shí)函數(shù)f(x)單調(diào)遞減,此時(shí)函數(shù)f(x)最多有一個(gè)零點(diǎn),∴D錯(cuò)誤
∴要使函數(shù)f(x)有且只有四個(gè)零點(diǎn),
則有a>0,
故選:A.
點(diǎn)評(píng):本題主要考查函數(shù)零點(diǎn)個(gè)數(shù)的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解決本題的關(guān)鍵,本題難度較大,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
ax+2b
1+x2
是定義在(-1,1)上的奇函數(shù),且f(1)=
1
2

(1)求函數(shù)f(x)的解析式;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)解不等式f(2-t)+f(
t
5
)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax,(x<0)
(a-3)x+4a,(x≥0)
滿足對(duì)任意的實(shí)數(shù)x1≠x2都有
f(x1)-f(x2)
x1-x2
<0
成立,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在區(qū)間(-1,1)上的函數(shù)f(x)=
ax+b
1+x2
為奇函數(shù),且f(
1
2
)=
2
5

(1)求實(shí)數(shù)a,b的值;
(2)用定義證明:函數(shù)f(x)在區(qū)間(-1,1)上是增函數(shù);
(3)解關(guān)于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax-1x+1
,  其中 a∈R

(1)當(dāng)a=1時(shí),求函數(shù)滿足f(x)≤1時(shí)的x的集合;
(2)求a的取值范圍,使f(x)在區(qū)間(0,+∞)上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
a-1x
 (a∈R)
,g(x)=lnx.
(1)若對(duì)任意的實(shí)數(shù)a,函數(shù)f(x)與g(x)的圖象在x=x0處的切線斜率總相等,求x0的值;
(2)若a>0,對(duì)任意x>0,不等式f(x)-g(x)≥1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案