【題目】已知橢圓C: + =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , O為坐標(biāo)原點(diǎn),點(diǎn)P(1, )在橢圓上,連接PF1交y軸于點(diǎn)Q,點(diǎn)Q滿足 = .直線l不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,l與橢圓C有兩個(gè)交點(diǎn)A,B. (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)M( ,0),若直線l過(guò)橢圓C的右焦點(diǎn)F2 , 證明: 為定值;
(Ⅲ)若直線l過(guò)點(diǎn)(0,2),設(shè)N為橢圓C上一點(diǎn),且滿足 + ,求實(shí)數(shù)λ的取值范圍.

【答案】解:(Ⅰ)由 = ,則Q為PF1的中點(diǎn),則PF1⊥F1F2 , 則c=1, = ,a2=b2﹣c2
解得:a= ,b=1,
∴橢圓的標(biāo)準(zhǔn)方程: ;

(Ⅱ)證明:由題意可知:設(shè)直線l的方程y=k(x﹣1),k≠1,設(shè)A(x1 , y1),B(x2 , y2),
,整理得:(1+2k2)x2﹣4k2x+2k2﹣2=0,
則x1+x2= ,x1x2= ,y1y2=k2(x1﹣1)(x2﹣1)=k2x1x2﹣k2(x1+x2)+k2 ,
=(x1 ,y1), =(x2 ,y2),
=(x1 ,y1)(x2 ,y2)=(1+k2)x1x2﹣(k2+ )(x1+x2)+ +k2 ,
=(1+k2)× ﹣(k2+ )× + +k2 ,
= + ,
=﹣ ,
為定值,定值為﹣
(Ⅲ)設(shè)A(x1 , y1),B(x2 , y2),Q(x0 , y0).
當(dāng)λ=0時(shí),由 + , + = ,A與B關(guān)于原點(diǎn)對(duì)稱,存在Q滿足題意,
∴λ=0成立;
當(dāng)λ≠0時(shí),聯(lián)立 ,得(1+2k2)x2+8kx+6=0,
由△=(8k)2﹣4×6(1+2k2)>0,解得k2 ,…(*),
∴x1+x2=﹣ ,x1x2= ,
y1+y2=k(x1+x2)+4=
+ ,得(x1+x2 , y1+y2)=(λx0 , λy0),可得x1+x2=λx0 , y1+y2=λy0
,由Q在橢圓 上,
代入,整理得4= (1+2k2),
代入(*)式,得λ2<4,解得﹣2<λ<2且λ≠0.
綜上可知:λ∈(﹣2,2).
【解析】(Ⅰ)由題意可知:c=1, = ,a2=b2﹣c2 , 即可求得a和b的值,求得橢圓方程;(Ⅱ)設(shè)直線AB的方程,代入橢圓方程,由韋達(dá)定理定理及向量數(shù)量積的坐標(biāo)運(yùn)算,即可求證 為定值;(Ⅲ)分類討論,設(shè)直線AB的方程,代入橢圓方程,由△>0,求得k2 ,由韋達(dá)定理,向量數(shù)量積的坐標(biāo)運(yùn)算,即可求得4= (1+2k2),即可求得實(shí)數(shù)λ的取值范圍.
【考點(diǎn)精析】利用橢圓的標(biāo)準(zhǔn)方程對(duì)題目進(jìn)行判斷即可得到答案,需要熟知橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在以為頂點(diǎn)的多面體中, 平面, 平面,

1)請(qǐng)?jiān)趫D中作出平面,使得,且,并說(shuō)明理由;

2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),當(dāng)x1 , x2∈(0,+∞)時(shí),都有(x1﹣x2)[f(x1)﹣f(x2)]<0.設(shè) ,則(
A.f(a)>f(b)>f(c)
B.f(b)>f(a)>f(c)
C.f(c)>f(a)>f(b)
D.f(c)>f(b)>f(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若向量 =(a+c,sinB), =(b﹣c,sinA﹣sinC),且 . (Ⅰ)求角A的大。
(Ⅱ)設(shè)函數(shù)f(x)=tanAsinωxcosωx﹣cosAcos2ωx(ω>0),已知其圖象的相鄰兩條對(duì)稱軸間的距離為 ,現(xiàn)將y=f(x)的圖象上各點(diǎn)向左平移 個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,得到函數(shù)y=g(x)的圖象,求g(x)在[0,π]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正整數(shù)數(shù)列中,由1開(kāi)始依次按如下規(guī)則,將某些數(shù)取出.先取1;再取1后面兩個(gè)偶數(shù)2,4;再取4后面最鄰近的3個(gè)連續(xù)奇數(shù)5,7,9;再取9后面的最鄰近的4個(gè)連續(xù)偶數(shù)10,12,14,16;再取此后最鄰近的5個(gè)連續(xù)奇數(shù)17,19,21,23,25.按此規(guī)則一直取下去,得到一個(gè)新數(shù)列1,2,4,5,7,9,10,12,14,16,17,,則在這個(gè)新數(shù)列中,由1開(kāi)始的第2 019個(gè)數(shù)是(  )

A. 3 971B. 3 972C. 3 973D. 3 974

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的值域是,則實(shí)數(shù)的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓C與x軸相切于點(diǎn)T(2,0),與y軸的正半軸相交于A,B兩點(diǎn)(A在B的上方),且AB=3.

(1)求圓C的方程;

(2)直線BT上是否存在點(diǎn)P滿足PA2+PB2+PT2=12,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)如果圓C上存在E,F(xiàn)兩點(diǎn),使得射線AB平分∠EAF,求證:直線EF的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的直角坐標(biāo)為(1,0),若直線l的極坐標(biāo)方程為 ρcos(θ+ )﹣1=0,曲線C的參數(shù)方程是 (t為參數(shù)).
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求 +

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

在平面直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù),),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點(diǎn)都在上,且點(diǎn),,依逆時(shí)針次序排列,點(diǎn)的極坐標(biāo)為.

(1)求點(diǎn),的直角坐標(biāo);

(2)設(shè)上任意一點(diǎn),求點(diǎn)到直線距離的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案