【題目】設(shè)函數(shù)=Asin(A>0,>0,<)在處取得最大值2,其圖象與x軸的相鄰兩個(gè)交點(diǎn)的距離為。

(1)求的解析式;

(2)求函數(shù) 的值域。

【答案】1=2 sin2x+);(2 ,]

【解析】

1)先確定函數(shù)的周期,可得ω的值,利用函數(shù)fx)=Asinωx+φ)(其中A0ω0,﹣πφπ)在x處取得最大值2,即可求得fx)的解析式;

2)由三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)可得gx,由,即可求得函數(shù)gx)的值域.

解:(1)由題意可得:fxmaxA2,

于是

fx)=2sin2x+φ),

fx)在處取得最大值2可得:kZ),

又﹣πφπ,故,

因此fx)的解析式為

2)由(1)可得:

,,

tcos2x,可知0t1

,

從而,

因此,函數(shù)gx)的值域?yàn)?/span>

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是兩條不同的直線, 是兩個(gè)不同的平面,則下列命題正確的是

A. ,則 B. ,則

C. ,則 D. ,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為了確定工效,進(jìn)行了5次試驗(yàn),收集數(shù)據(jù)如下:

加工零件個(gè)數(shù)個(gè)

10

20

30

40

50

加工時(shí)間(分鐘)

64

69

75

82

90

經(jīng)檢驗(yàn),這組樣本數(shù)據(jù)的兩個(gè)變量具有線性相關(guān)關(guān)系,那么對(duì)于加工零件的個(gè)數(shù)與加工時(shí)間這兩個(gè)變量,下列判斷正確的是(

A. 負(fù)相關(guān),其回歸直線經(jīng)過(guò)點(diǎn) B. 正相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)

C. 負(fù)相關(guān),其回歸直線經(jīng)過(guò)點(diǎn) D. 正相關(guān),其回歸直線經(jīng)過(guò)點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,為自然對(duì)數(shù)的底數(shù).

(Ⅰ)若函數(shù)上存在零點(diǎn),求實(shí)數(shù)的取值范圍;

(Ⅱ)若函數(shù)處的切線方程為.求證:對(duì)任意的,總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點(diǎn),且平面平面ABCD.

證明:平面PNB;

設(shè)點(diǎn)E是棱PA上一點(diǎn),若平面DEM,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在扶貧活動(dòng)中,為了盡快脫貧(無(wú)債務(wù))致富,企業(yè)甲將經(jīng)營(yíng)狀況良好的某種消費(fèi)品專賣店以5.8萬(wàn)元的優(yōu)惠價(jià)格轉(zhuǎn)讓給了尚有5萬(wàn)元無(wú)息貸款沒(méi)有償還的小型企業(yè)乙,并約定從該店經(jīng)營(yíng)的利潤(rùn)中,首先保證企業(yè)乙的全體職工每月最低生活費(fèi)的開(kāi)支3 600元后,逐步償還轉(zhuǎn)讓費(fèi)(不計(jì)息).在甲提供的資料中:這種消費(fèi)品的進(jìn)價(jià)為每件14元;該店月銷量Q(百件)與銷售價(jià)格P(元)的關(guān)系如圖所示;每月需各種開(kāi)支2 000.

1)當(dāng)商品的價(jià)格為每件多少元時(shí),月利潤(rùn)扣除職工最低生活費(fèi)的余額最大?并求最大余額;

2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù));以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(Ⅰ)求曲線的普通方程與曲線的直角坐標(biāo)方程;

(Ⅱ)若把曲線各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,縱坐標(biāo)變?yōu)樵瓉?lái)的,得到曲線,求曲線的方程;

(Ⅲ)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)到曲線上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax2﹣x(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)在(1,﹣2)處的切線方程;
(2)當(dāng)a≤0時(shí),分析函數(shù)f(x)在其定義域內(nèi)的單調(diào)性;
(3)若函數(shù)y=g(x)的圖象上存在一點(diǎn)P(x0 , y0),使得以P為切點(diǎn)的切線m將圖象分割為c1 , c2兩部分,且c1 , c2分別完全位于切線m的兩側(cè)(除了P點(diǎn)外),則稱點(diǎn)x0為函數(shù)y=g(x)的“切割點(diǎn)“.問(wèn):函數(shù)f(x)是否存在滿足上述條件的切割點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)通過(guò)調(diào)查問(wèn)卷(滿分50分)的形式對(duì)本企業(yè)900名員工的工作滿意程度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(16名女工,14名男工)的得分,如下表:

47

36

32

48

34

44

43

47

46

41

43

42

50

43

35

49

37

35

34

43

46

36

38

40

39

32

48

33

40

34

(1)根據(jù)以上數(shù)據(jù),估計(jì)該企業(yè)得分大于45分的員工人數(shù);

(2)現(xiàn)用計(jì)算器求得這30名員工的平均得分為40.5分,若規(guī)定大于平局得分為 “滿意”,否則為 “不滿意”,請(qǐng)完成下列表格:

“滿意”的人數(shù)

“不滿意”的人數(shù)

合計(jì)

女員工

16

男員工

14

合計(jì)

30

(3)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?

參考數(shù)據(jù):

P(K2K)

0.10

0.050

0.025

0.010

0.001

K

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

同步練習(xí)冊(cè)答案