已知函數(shù)數(shù)學公式(k∈R),若函數(shù)y=|f(x)|+k有三個零點,則實數(shù)k的取值范圍是


  1. A.
    k≤2
  2. B.
    -1<k<0
  3. C.
    -2≤k<-1
  4. D.
    k≤-2
D
分析:由題意可得|f(x)|=-k≥0,進而可得k≤0,作出圖象,結(jié)合圖象可得答案.
解答:由y=|f(x)|+k=0得|f(x)|=-k≥0,所以k≤0,作出函數(shù)y=|f(x)|的圖象,

由圖象可知:要使y=-k與函數(shù)y=|f(x)|有三個交點,
則有-k≥2,即k≤-2,
故選D.
點評:本題考查根的存在性及個數(shù)的判斷,作出函數(shù)的圖象是解決問題的關(guān)鍵,屬中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014屆甘肅天水一中高二下學期期末考試理科數(shù)學試卷(解析版) 題型:選擇題

已知函數(shù)(k∈R),若函數(shù)有三個零點,則實數(shù)k的取值范圍是(   )

(A)k≤2               (B)-1<k<0

(C)-2≤k<-1        (D)k≤-2

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)數(shù)學公式(k∈R).
(1)若集合{x|f(x)=x,x∈R}中有且只有一個元素,求k的值;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是增函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)數(shù)學公式(k∈R)是偶函數(shù).
(1)求k的值;
(2)定理:函數(shù)數(shù)學公式(a、b是正常數(shù))在區(qū)間數(shù)學公式上為減函數(shù),在區(qū)間數(shù)學公式上為增函數(shù).參考該定理,解決下面問題:是否存在實數(shù)m同時滿足以下兩個條件:①不等式數(shù)學公式恒成立;②方程f(x)-m=0有解.若存在,試求出實數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省漳州市詔安一中高一(上)期中數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)(k∈R)是偶函數(shù).
(1)求k的值;
(2)定理:函數(shù)(a、b是正常數(shù))在區(qū)間上為減函數(shù),在區(qū)間上為增函數(shù).參考該定理,解決下面問題:是否存在實數(shù)m同時滿足以下兩個條件:①不等式恒成立;②方程f(x)-m=0有解.若存在,試求出實數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省鹽城中學高一(上)期中數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)(k∈R).
(1)當x>0時,F(xiàn)(x)=m(x),且F(x)為R上的奇函數(shù).求x<0時,F(xiàn)(x)的表達式;
(2)若f(x)=m(x)+n(x)為偶函數(shù),求k的值;
(3)對(2)中的函數(shù)f(x),設(shè),若函數(shù)f(x)與g(x)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案