在△ABC中,若acosA-bcosB=0,則三角形的形狀是


  1. A.
    等腰三角形
  2. B.
    直角三角形
  3. C.
    等腰直角三角形
  4. D.
    等腰三角形或直角三角形
D
分析:解法1:把由余弦定理解出的余弦表達式代入已知的等式化簡可得:(a2-b2)c2=(a2-b2)(a2+b2),分①a2-b2=0和②a2-b2≠0兩種情況討論;
解法2:根據(jù)正弦定理把等式acosA=bcosB的邊換成角的正弦,再利用倍角公式化簡整理得sin2A=sin2B,進而推斷A=B,或A+B=90°答案可得.
解答:法1:∵cosA=,cosB=
•a=•b,
化簡得:a2c2-a4=b2c2-b4,即(a2-b2)c2=(a2-b2)(a2+b2),
①若a2-b2=0時,a=b,此時△ABC是等腰三角形;
②若a2-b2≠0,a2+b2=c2,此時△ABC是直角三角形,
所以△ABC是等腰三角形或直角三角形;
法2:根據(jù)正弦定理可知∵acosA=bcosB,
∴sinAcosA=sinBcosB,
∴sin2A=sin2B,
∴A=B,或2A+2B=180°即A+B=90°,
所以△ABC為等腰或直角三角形.
故選D
點評:此題考查了三角形形狀的判斷,其中涉及的知識有:余弦定理,正弦定理,等腰、直角三角形的判定,以及二倍角的正弦函數(shù)公式,解法1利用了分類討論的思想,熟練掌握正弦、余弦定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,若AC=1,AB=
3
,C=
3
,則BC=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•佛山二模)在△ABC中,若
AC
BC
=1
,
AB
BC
=-2
,則|
BC
|
=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•成都二模)在△ABC中,若
AC
BC
=1,
AB
BC
=-2,則|
BC
|的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若AC=,AB=,∠C=,則BC等于(    )

A.5         B.        C.3    D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,若AC=,AB=,∠C=,則△ABC的面積為(    )

A.    B.    C.3    D.

查看答案和解析>>

同步練習冊答案