(本小題滿分12分)

過(guò)拋物線焦點(diǎn)垂直于對(duì)稱(chēng)軸的弦叫做拋物線的通徑。如圖,已知拋物線,過(guò)其焦點(diǎn)F的直線交拋物線于、 兩點(diǎn)。過(guò)、作準(zhǔn)線的垂線,垂足分別為、.

(1)求出拋物線的通徑,證明都是定值,并求出這個(gè)定值;
(2)證明: .
(1)通徑,證明:時(shí),、,是定值;AB與x軸不垂直時(shí),設(shè)AB:所以,是定值(2)

試題分析:焦點(diǎn),準(zhǔn)線
(1)時(shí)、,通徑,,是定值.
AB與x軸不垂直時(shí),設(shè)AB:
,所以是定值.
(2)、
所以
方法二:由拋物線知:
點(diǎn)評(píng):直線與圓錐曲線相交時(shí),聯(lián)立方程利用韋達(dá)定理是常用的方法
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分13分)
設(shè)點(diǎn)P是圓x2 +y2 =4上任意一點(diǎn),由點(diǎn)P向x軸作垂線PP0,垂足為Po,且
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)直線:y=kx+m(m≠0)與(Ⅰ)中的軌跡C交于不同的兩點(diǎn)A,B.
(1)若直線OA,AB,OB的斜率成等比數(shù)列,求實(shí)數(shù)m的取值范圍;
(2)若以AB為直徑的圓過(guò)曲線C與x軸正半軸的交點(diǎn)Q,求證:直線過(guò)定點(diǎn)(Q點(diǎn)除外),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

從拋物線上一點(diǎn)P引拋物線準(zhǔn)線的垂線,垂足為M,且|PM|=5,設(shè)拋物線的焦點(diǎn)為F,則△MPF的面積(   )
A.5B.10C.20D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

中,兩個(gè)定點(diǎn),的垂心H(三角形三條高線的交點(diǎn))是AB邊上高線CD的中點(diǎn)。
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)斜率為2的直線交動(dòng)點(diǎn)C的軌跡于P、Q兩點(diǎn),求面積的最大值(O是坐標(biāo)原點(diǎn))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線的焦點(diǎn)的直線與拋物線交于A、B兩點(diǎn),拋物線準(zhǔn)線與x軸交于C點(diǎn),若,則|AF|-|BF|的值為(      )
A.                 B.                 C.               D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過(guò)橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),=(3,-1)共線.
(1)求橢圓的離心率;
(2)設(shè)M為橢圓上任意一點(diǎn),且),證明為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)雙曲線的離心率為e=,右焦點(diǎn)為F(c,0),方程ax2-bx-c=0的兩個(gè)實(shí)根分別為x1和x2,則點(diǎn)P(x1,x2
A.在圓x2+y2=8外B.在圓x2+y2=8上
C.在圓x2+y2=8內(nèi) D.不在圓x2+y2=8內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)雙曲線x2-y2=1的兩條漸近線與直線x=圍成的三角形區(qū)域(包含邊界)為E,P(x,y)為該區(qū)域的一個(gè)動(dòng)點(diǎn),則目標(biāo)函數(shù)z=x-2y的最小值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某海域有、兩個(gè)島嶼,島在島正東4海里處。經(jīng)多年觀察研究發(fā)現(xiàn),某種魚(yú)群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現(xiàn)過(guò)魚(yú)群。以、所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系。

(1)求曲線的標(biāo)準(zhǔn)方程;(6分)
(2)某日,研究人員在、兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),、兩島收到魚(yú)群在處反射信號(hào)的時(shí)間比為,問(wèn)你能否確定處的位置(即點(diǎn)的坐標(biāo))?(8分)

查看答案和解析>>

同步練習(xí)冊(cè)答案