【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)),直線的普通方程為,設(shè)與的交點(diǎn)為,當(dāng)變化時(shí),記點(diǎn)的軌跡為曲線. 在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,直線的方程為.
(1)求曲線的普通方程;
(2)設(shè)點(diǎn)在上,點(diǎn)在上,若直線與的夾角為,求的最大值.
【答案】(1).(2)
【解析】
(1)將直線的參數(shù)方程轉(zhuǎn)化為普通方程,聯(lián)立的方程并消去,再根據(jù)直線斜率存在且不為零,即可得到曲線的普通方程;
(2)先求出直線的普通方程,點(diǎn)到直線的距離為,由題意可得,求出到直線的距離的最大值,即可求出的最大值.
(1)直線可化為:,代入,
消去可得:,
整理得:;
由直線斜率存在且不為零,則,
曲線的普通方程為:.
(2)由,得,
所以直線的普通方程為:,
設(shè)點(diǎn)到直線的距離為,
由與的夾角為,可得,
求的最大值可轉(zhuǎn)化為點(diǎn)到直線的距離的最大值,
的最大值即圓心到直線的距離加上半徑,
所以,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)a、b滿足a2+b2-ab=3.
(1)求a-b的取值范圍;
(2)若ab>0,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=﹣x3+1+a(x≤e,e是自然對(duì)數(shù)的底)與g(x)=3lnx的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[0,e3﹣4]B.[0,2]
C.[2,e3﹣4]D.[e3﹣4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某超市2019年中的12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示,則下列說法中,錯(cuò)誤的是( )
A.該超市在2019年的12個(gè)月中,7月份的收益最高;
B.該超市在2019年的12個(gè)月中,4月份的收益最低;
C.該超市在2019年7月至12月的總收益比2109年1月至6月的總收益增長(zhǎng)了90萬(wàn)元;
D.該超市在2019年1月至6月的總收益低于2109年7月至12月的總收益.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是拋物線上一點(diǎn),點(diǎn)為拋物線的焦點(diǎn),.
(1)求直線的方程;
(2)若直線與拋物線的另一個(gè)交點(diǎn)為,曲線在點(diǎn)與點(diǎn)處的切線分別為,直線相交于點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,,,,是的中點(diǎn),E是棱上一動(dòng)點(diǎn).
(1)若E是棱的中點(diǎn),證明:平面;
(2)求二面角的余弦值;
(3)是否存在點(diǎn)E,使得,若存在,求出E的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某縣為了幫助農(nóng)戶脫貧致富,鼓勵(lì)農(nóng)戶利用荒地山坡種植果樹,某農(nóng)戶考察了三種不同的果樹苗、、.經(jīng)過引種實(shí)驗(yàn)發(fā)現(xiàn),引種樹苗的自然成活率為,引種樹苗、的自然成活率均為.
(1)任取樹苗、、各一棵,估計(jì)自然成活的棵數(shù)為,求的分布列及其數(shù)學(xué)期望;
(2)將(1)中的數(shù)學(xué)期望取得最大值時(shí)的值作為種樹苗自然成活的概率.該農(nóng)戶決定引種棵種樹苗,引種后沒有自然成活的樹苗有的樹苗可經(jīng)過人工栽培技術(shù)處理,處理后成活的概率為,其余的樹苗不能成活.
①求一棵種樹苗最終成活的概率;
②若每棵樹苗引種最終成活可獲利元,不成活的每棵虧損元,該農(nóng)戶為了獲利期望不低于萬(wàn)元,問至少要引種種樹苗多少棵?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn)且恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com