已知a>0,求證:
a2+
1
a2
-
3
>a+
1
a
-3.
考點:不等式的證明
專題:證明題
分析:利用分析法證明即可:要證
a2+
1
a2
-
3
a+
1
a
-3
,只需證
a2+
1
a2
+3
a+
1
a
+
3
成立,依題意,只需證明兩端平方后的不等式任然成立即可,最后,只需證明證a2+
1
a2
≥1
即可,該式成立,從而得原不等式成立.
解答: 證明:要證
a2+
1
a2
-
3
a+
1
a
-3
,
只需證
a2+
1
a2
+3
a+
1
a
+
3

∵a>0,∴兩邊均大于0,
∴只需證(
a2+
1
a2
+3)2
(a+
1
a
+
3
)2
,
即證
a2+
1
a2
3
3
(a+
1
a
)
,
即證a2+
1
a2
1
3
(a2+
1
a2
+2)
即證a2+
1
a2
≥1
,
上式顯然成立,∴原不等式成立.
點評:本題考查不等式的證明,著重考查分析法證明不等式,掌握分析法的特點及證題思路是關(guān)鍵,考查推理證明能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)集合S={x|x≥2},T={x|x≤5},則S∩T=( 。
A、(-∞,5]
B、[2,+∞)
C、(2,5)
D、[2,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinωx+cosωx(ω>0),x∈R,在曲線y=f(x)與直線y=1的交點中,若相鄰交點距離的最小值為
π
3
,則f(x)的最小正周期為( 。
A、
π
2
B、
3
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-a(1-
1
x
),a∈R.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)的最小值為0,回答下列問題:
(。┣髮崝(shù)a的值;
(ⅱ)已知數(shù)列{an}滿足a1=1,an+1=f(an)+2,記[x]表示不大于x的最大整數(shù),求Sn=[a1]+[a2]+…+[an],求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(
1
2
x-
π
6
),x∈R.
(1)求f(0)的值;
(2)求f(x)的最小正周期;
(3)設(shè)α,β∈[0,
π
2
],f(2α+
π
3
)=
6
5
,f(2β+
3
)=
24
13
.求sin(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cos2ωx-sin2ωx(ω>0)的最小正周期為6,過兩點A(t,f(t)),B(t+1,f(t+1))的直線的斜率記為g(t).
(Ⅰ)求ω的值;
(Ⅱ)寫出函數(shù)g(t)的解析式,求g(t)在[-
3
2
,
3
2
]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知直線l:y=k(x+2
2
)和點A(-
2
,0),B(
2
,0),動點P滿足PA=
2
PB,且存在兩點P到直線l的距離等于1,則k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

各項均為非負的任意等差數(shù)列{an}滿足a12+a102=5,則a3+a4+a5+a6+a7+a8的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若tanθ=
3
,則
sin2θ
1+cos2θ
=( 。
A、
3
B、-
3
C、
3
3
D、-
3
3

查看答案和解析>>

同步練習冊答案