將一顆骰子投擲兩次,第一次出現(xiàn)的點(diǎn)數(shù)記為a,第二次出現(xiàn)的點(diǎn)數(shù)記為b,設(shè)兩條直線l1:ax+by=2,l2:x+2y=2平行的概率為p1,相交的概率為p2,試問點(diǎn)P(p1,p2)與直線l2:x+2y=2的位置關(guān)系是
 
分析:先分別求出與直線平行的概率與直線相交的概率,得到點(diǎn)P的坐標(biāo),將點(diǎn)P的坐標(biāo)代入方程判定即可.
解答:解:對(duì)于a與b各有6中情形,故總數(shù)為36種
設(shè)兩條直線l1:ax+by=2,l2:x+2y=2平行的情形有a=2,b=4,或a=3,b=6,故概率為
1
18

設(shè)兩條直線l1:ax+by=2,l2:x+2y=2相交的情形除平行與重合即可,故概率為
11
12

將(
1
18
11
12
)代入直線x+2y=2方程得2×
11
12
<2-
1
18
,
故答案為P在l2直線的左下方
點(diǎn)評(píng):本題主要考查了空間中直線與直線之間的位置關(guān)系,以及概率的基本性質(zhì)與點(diǎn)與直線的位置關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一顆骰子投擲兩次,第一次出現(xiàn)的點(diǎn)數(shù)記為a,第二次出現(xiàn)的點(diǎn)數(shù)記為b,設(shè)兩條直線?1:ax+by=2,?2:x+2y=2,?1與?2平行的概率為p_1,相交的概率為p2,則p2-p1的大小為( 。
A、
31
36
B、
5
6
C、-
5
6
D、-
31
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將一顆骰子投擲兩次,第一次出現(xiàn)的點(diǎn)數(shù)記為a,第二次出現(xiàn)的點(diǎn)數(shù)記為b,設(shè)兩條直線l1:ax+by=2,l2:x+2y=2,l1與l2平行的概率是P1,相交的概率為P2,則P2-P1的大小為(  )
A、
31
36
B、
5
6
C、-
5
6
D、-
31
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記事件A=“直線ax-by=0與圓(x-2)2+y2=1相交”.
(Ⅰ)若將一顆骰子投擲兩次得到的點(diǎn)數(shù)分別為a、b,求事件A發(fā)生的概率;
(Ⅱ)若實(shí)數(shù)a、b滿足(a-2)2+(b-
3
)2<1
,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•溫州一模)將一顆骰子投擲兩次分別得到點(diǎn)數(shù)a,b,則直線ax-by=0與圓(x-2)2+y2=2相交的概率為
11
36
11
36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州一模)若實(shí)數(shù)x,y滿足約束件
x+y-1≤0
x-y+1≥0
y+1≥0
將一顆骰子投擲兩次得到的點(diǎn)數(shù)分別為a,b,則函數(shù)z=2ax+by在點(diǎn)(2,-1)處取得最大值的概率為
5
6
5
6

查看答案和解析>>

同步練習(xí)冊(cè)答案