設(shè)函數(shù)
(I)證明f(x)在(﹣b,+∞)內(nèi)是減函數(shù);
(II)若不等式在[4,6]上恒成立,求實數(shù)m的取值范圍.
(I)證明:f(x)==1+
設(shè)x1>x2>﹣b,
則f(x1)﹣f(x2)=1+﹣(1﹣)=;
∵a>b>0,x1>x2>﹣b
∴a﹣b>0,x2﹣x1<0,x1+b>0,x2+b>0
則f(x1)﹣f(x2)<0
∴f(x)在(﹣b,+∞)內(nèi)是減函數(shù);
(II)∵不等式在[4,6]上恒成立
∴m>(max
而由(1)可知在(﹣2,+∞)上單調(diào)遞減則在[4,6]上減
∴m>(max =
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)數(shù)學(xué)公式
(I)證明:0<a<1是函數(shù)f(x)在區(qū)間(1,2)上遞增的充分而不必要的條件;
(II)若x∈(-∞,0)時,滿足f(x)<2a2-6恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)數(shù)學(xué)公式
(I)證明f(x)在(-b,+∞)內(nèi)是減函數(shù);
(II)若不等式數(shù)學(xué)公式在[4,6]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京期末題 題型:解答題

設(shè)函數(shù)
(I)證明:0<a<1是函數(shù)f(x)在區(qū)間(1,2)上遞增的充分而不必要的條件;
(II)若x∈(﹣∞,0)時,滿足f(x)<2a2﹣6恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省蘇州市張家港市梁豐高中高一(上)10月月考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)
(I)證明f(x)在(-b,+∞)內(nèi)是減函數(shù);
(II)若不等式在[4,6]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案