定義行列式運算a1a4a2a3.將函數(shù)f(x)的圖象向左平移個單位,以下是所得函數(shù)圖象的一個對稱中心是 (  )

A. B. C. D.

 

B

【解析】根據(jù)行列式的定義可知f(x)sin 2xcos 2x2sin,向左平移

個單位得到g(x)2sin2sin 2x,所以g2sin2sin π0,所以是函數(shù)的一個對稱中心,選B.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-2橢圓、雙曲線、拋物線練習(xí)卷(解析版) 題型:選擇題

設(shè)F是拋物線C1y22px(p0)的焦點,點A是拋物線與雙曲線C21(a0,b0)的一條漸近線的一個公共點,且AFx軸,則雙曲線的離心率為 (  )

A2 B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-2數(shù)列求和與數(shù)列的綜合應(yīng)用練習(xí)卷(解析版) 題型:選擇題

已知數(shù)列{an}的前n項和Sn滿足:SnSmSnm,且a11,那么a11=(  ).                  

A1 B9 C10 D55

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)3-2解三角形練習(xí)卷(解析版) 題型:選擇題

ABC中,角A,B,C所對的邊分別為ab,c,若角AB,C依次成等差數(shù)列,a1,b,則SABC等于(  )

A. B. C. D2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)3-1三角函數(shù)與三角恒等變換練習(xí)卷(解析版) 題型:填空題

已知函數(shù)f(x)sin ωxcos ωx(ω0),yf(x)的圖象與直線y2的兩個相鄰交點的距離等于π,則f(x)的單調(diào)遞增區(qū)間是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-2導(dǎo)數(shù)及其應(yīng)用練習(xí)卷(解析版) 題型:填空題

函數(shù)f(x)x(a0)的單調(diào)遞減區(qū)間是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-1函數(shù)的概念與基本初等函數(shù)練習(xí)卷(解析版) 題型:解答題

某養(yǎng)殖廠需定期購買飼料,已知該廠每天需要飼料200千克,每千克飼料的價格為1.8元,飼料的保管費與其他費用平均每千克每天0.03元,購買飼料每次支付運費300元.

(1)求該廠多少天購買一次飼料才能使平均每天支付的總費用最少;

(2)若提供飼料的公司規(guī)定,當(dāng)一次購買飼料不少于5噸時,其價格可享受八五折優(yōu)惠(即原價的85%).問:該廠是否應(yīng)考慮利用此優(yōu)惠條件?請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)1-2算法與程序框圖等練習(xí)卷(解析版) 題型:選擇題

已知平面直角坐標(biāo)系xOy上的區(qū)域D由不等式組給定,若M(x,y)D上的動點,點A的坐標(biāo)為(,1),則z·的最大值為(  )

A4 B3 C4 D3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-3練習(xí)卷(解析版) 題型:解答題

經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1 t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1 t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進了130 t該農(nóng)產(chǎn)品.以X(單位: t,100≤X≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

(1)T表示為X的函數(shù);

(2)根據(jù)直方圖估計利潤T不少于57 000元的概率;

(3)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點值的概率(例如:若x[100,110),則取X105,且X105的概率等于需求量落入[100,110)的頻率,求T的數(shù)學(xué)期望.

 

查看答案和解析>>

同步練習(xí)冊答案