函數(shù)y=log2
2-x
2+x
的圖象( 。
A.關(guān)于直線y=-x對稱B.關(guān)于原點(diǎn)對稱
C.關(guān)于y軸對稱D.關(guān)于直線y=x對稱
由于定義域?yàn)椋?2,2)關(guān)于原點(diǎn)對稱,
又f(-x)=
log
2+x
2-x
2
=-
log
2-x
2+x
2
=-f(x),故函數(shù)為奇函數(shù),
圖象關(guān)于原點(diǎn)對稱,
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=
log2|x|
x
的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)=x5+ax3+bx-8且f(-2)=-6,那么f(2)=(  )
A.0B.-10C.-18D.-26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的偶函數(shù)f(x),滿足f(x+
1
2
)=-f(x+
3
2
)
,且在區(qū)間[-1,0]上為遞增,則( 。
A.f(3)<f(
2
)<f(2)
B.f(2)<f(3)<f(
2
C.f(3)<f(2)<f(
2
D.f(
2
)<f(2)<f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在R上定義的函數(shù)f(x)是偶函數(shù),且f(x)=f(2-x).若f(x)在區(qū)間[1,2]上是減函數(shù),則f(x)
( 。
A.在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[3,4]上是增函數(shù)
B.在區(qū)間[-2,-1]上是增函數(shù),在區(qū)間[3,4]上是減函數(shù)
C.在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[3,4]上是增函數(shù)
D.在區(qū)間[-2,-1]上是減函數(shù),在區(qū)間[3,4]上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)是R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=log2(x+1),則f(-15)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)是定義在(-2,2)上的減函數(shù),滿足:f(-x)=-f(x),且f(m-1)+f(2m-1)>0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=|x-2|+2|x-a|(a∈R).
(Ⅰ)當(dāng)a=1時(shí),解不等式f(x)>3;
(Ⅱ)不等式f(x)≥1在區(qū)間(-∞,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知y=f(x)是定義在R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,則滿足f(m)<f(1)的實(shí)數(shù)m的范圍是______.

查看答案和解析>>

同步練習(xí)冊答案