分析 (1)根據(jù)正弦定理把題設(shè)等式中的邊換成相應(yīng)角的正弦,化簡整理可求得cosA,進(jìn)而求得A.
(2)利用輔助角公式化簡函數(shù),即可求函數(shù)y=$\sqrt{3}$sinB+sin(C-$\frac{π}{6}$)的值域.
解答 解:(1)根據(jù)正弦定理∵2b•cosA=c•cosA+a•cosC.
∴2sinB•cosA=sinC•cosA+sinA•cosC,
∵sinB≠0
∴cosA=$\frac{1}{2}$,
又∵0°<A<180°,∴A=$\frac{π}{3}$;
(2)∵$A=\frac{π}{3}$,∴$B+C=\frac{2π}{3}$,
∴$C=\frac{2π}{3}-B$,
∴$y=\sqrt{3}sinB+cosB=2sin(B+\frac{π}{6})$,
∵$0<B<\frac{2π}{3}$,
∴y∈(1,2].
點(diǎn)評(píng) 本題主要考查了正弦定理的應(yīng)用,考查三角函數(shù)的圖象與性質(zhì).解題的關(guān)鍵是利用正弦定理完成了邊角問題的互化.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $4\sqrt{2}π$ | B. | $8\sqrt{2}π$ | C. | 4π | D. | $4\sqrt{2}π+4π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $\sqrt{2}$ | C. | $\frac{{3+2\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com