已知函數(shù)f(x)=數(shù)學(xué)公式(a>0且a≠1).
(1)求f(x)的定義域和值域;
(2)討論f(x)的單調(diào)性.

解:(1)易得f(x)的定義域?yàn)閧x|x∈R}.設(shè)y=,解得ax=-
∵ax>0當(dāng)且僅當(dāng)->0時(shí),方程①有解.解->0得-1<y<1.
∴f(x)的值域?yàn)閧y|-1<y<1}.
(2)f(x)==1-
1°當(dāng)a>1時(shí),∵ax+1為增函數(shù),且ax+1>0.
為減函數(shù),從而f(x)=1-=為增函數(shù).
2°當(dāng)0<a<1時(shí),類(lèi)似地可得f(x)=為減函數(shù).
分析:(1)定義域易得,利用反解自變量的方法求值域即可.
(2)先把函數(shù)分離常數(shù),在分底數(shù)和1的大小兩種情況再結(jié)合復(fù)合函數(shù)的單調(diào)性來(lái)判斷即可.
點(diǎn)評(píng):本題是對(duì)函數(shù)定義域和值域以及單調(diào)性的綜合考查.在利用復(fù)合函數(shù)的單調(diào)性時(shí),其原則是;單調(diào)性相同為增,單調(diào)性相反為減,且乘正數(shù)單調(diào)性不變,乘負(fù)數(shù)單調(diào)性相反.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線(xiàn)x=
π
6
對(duì)稱(chēng),求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線(xiàn)l與直線(xiàn)3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案