如圖,菱形ABCD中,平面ABCD,平面ABCD,

(1)求證:平面BDE;
(2)求銳二面角的大小.
(1)證明:見(jiàn)解析;(2).

試題分析:(1)利用已有的垂直關(guān)系,以為原點(diǎn),,軸正向,軸過(guò)且平行于,建立空間直角坐標(biāo)系通過(guò)計(jì)算,,得到,
達(dá)到證明目的.
(2)由知(1)是平面的一個(gè)法向量,
設(shè)是平面的一個(gè)法向量,利用 ,  

確定得到,由<,>及二面角為銳二面角,得解.
“向量法”往往能將復(fù)雜的證明問(wèn)題,轉(zhuǎn)化成計(jì)算問(wèn)題,達(dá)到化繁為簡(jiǎn),化難為易的目的.
試題解析:(1)證明:連接,設(shè),
為菱形,∴,以為原點(diǎn),、軸正向,軸過(guò)且平行于,建立空間直角坐標(biāo)系(圖1),    2分

,,   4分
,,∴,
,∴⊥平面.   6分
(2)由知(1)是平面的一個(gè)法向量,
設(shè)是平面的一個(gè)法向量,
,由 ,  

得:,   8分
,得,于是
<,>   10分
但二面角為銳二面角,
故其大小為.     12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形, ,且點(diǎn)滿足 .

(1)證明:平面 .
(2)在線段上是否存在點(diǎn),使得平面?若存在,確定點(diǎn)的位置,若不存在請(qǐng)說(shuō)明理由 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,矩形中,,,分別為、邊上的點(diǎn),且,,將沿折起至位置(如圖2所示),連結(jié)、,其中.

(Ⅰ)求證:平面
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐中,點(diǎn)分別是棱的中點(diǎn).

(1)求證://平面;
(2)若平面平面,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知平行六面體ABCD—A1B1C1D1的底面為正方形,O1、O分別為上、下底面的中心,且A1在底面ABCD上的射影是O。

(Ⅰ)求證:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1與平面CAA1的夾角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐中,,°,平面平面、分別為中點(diǎn).

(1)求證:∥平面;
(2)求證:
(3)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,

(Ⅰ)求證:
(Ⅱ)設(shè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在四面體ABCD中,有如下結(jié)論:
①若,則
②若分別是的中點(diǎn),則的大小等于異面直線所成角的大。
③若點(diǎn)是四面體外接球的球心,則在面上的射影為的外心;
④若四個(gè)面是全等的三角形,則為正四面體.
其中所有正確結(jié)論的序號(hào)是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線與平面,給出下列三個(gè)結(jié)論:①若,,則;
②若,則; ③若,,則
其中正確的個(gè)數(shù)是  (    )
A.0B.1 C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案