【題目】在直角坐標系中,以為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為, 分別為軸, 軸的交點.

(1)寫出的直角坐標方程,并求的極坐標;

(2)設的中點為,求直線的極坐標方程.

【答案】(1)答案見解析;(2) .

【解析】試題分析:(1先利用三角函數(shù)的差角公式展開曲線的極坐標方程的左式,再利用直角坐標與極坐標間的關(guān)系,即利用 , ,進行代換即得.(2)先在直角坐標系中算出中點的坐標,再利用直角坐標與極坐標間的關(guān)系求出其極坐標和直線的極坐標方程即可.

試題解析:(1)由

從而的直角坐標方程為,即

時, ,所以, 時, ,所以.

2點的直角坐標為 點的直角坐標為,

點的直角坐標為,則點的極坐標為,

直線的極坐標方程為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的一條對稱軸為,且最高點的縱坐標是

(1)求的最小值及此時函數(shù)的最小正周期、初相;

(2)在(1)的情況下,設,求函數(shù)上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校舉辦“中國詩詞大賽”活動,某班派出甲乙兩名選手同時參加比賽. 大賽設有15個詩詞填空題,其中“唐詩”、“宋詞”和“毛澤東詩詞”各5個.每位選手從三類詩詞中各任選1個進行作答,3個全答對選手得3分,答對2個選手得2分,答對1個選手得1分,一個都沒答對選手得0分. 已知“唐詩”、“宋詞”和“毛澤東詩詞”中甲能答對的題目個數(shù)依次為5,4,3,乙能答對的題目個數(shù)依此為4,5,4,假設每人各題答對與否互不影響,甲乙兩人答對與否也互不影響

求:(1)甲乙兩人同時得到3分的概率;

2甲乙兩人得分之和的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:極坐標與參數(shù)方程

已知平面直角坐標系,以為極點, 軸的非負半軸為極軸建立極坐標系,曲線的參數(shù)方程為為參數(shù)). 是曲線上兩點,點的極坐標分別為.

1)寫出曲線的普通方程和極坐標方程;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,已知曲線,將曲線上的點向左平移一個單位,然后縱坐標不變,橫坐標軸伸長到原來的2倍,得到曲線,又已知直線是參數(shù)),且直線與曲線交于兩點.

I)求曲線的直角坐標方程,并說明它是什么曲線;

II)設定點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為實常數(shù)).

)若的極值點,求實數(shù)的取值范圍.

)討論函數(shù)上的單調(diào)性.

)若存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,底面,,分別是棱,的中點,為棱上的一點,且//平面.

(1)的值;

(2)求證:;

(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)求證:當時, ;

(Ⅱ)若函數(shù)1+∞)上有唯一零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知有窮數(shù)列 , , , ,若數(shù)列中各項都是集合的元素,則稱該數(shù)列為數(shù)列.

對于數(shù)列,定義如下操作過程中任取兩項, ,將的值添在的最后,然后刪除 ,這樣得到一個項的新數(shù)列,記作(約定:一個數(shù)也視作數(shù)列).若還是數(shù)列,可繼續(xù)實施操作過程.得到的新數(shù)列記作, ,如此經(jīng)過次操作后得到的新數(shù)列記作

)設, , , ,請寫出的所有可能的結(jié)果.

)求證:對數(shù)列實施操作過程后得到的數(shù)列仍是數(shù)列.

)設, , , , , , ,求的所有可能的結(jié)果,并說明理由.

查看答案和解析>>

同步練習冊答案