(本小題滿分13分)

已知函數(shù)

(Ⅰ)判斷f(x)在上的單調(diào)性,并證明你的結(jié)論;

(Ⅱ)若集合A={y | y=f(x),},B=[0,1], 試判斷A與B的關(guān)系;

 

【答案】

解:(1)f(x)在上為增函數(shù).(2)A=B.

【解析】本試題主要是考查了函數(shù)的單調(diào)性和集合的關(guān)系的運(yùn)用

(1)先判定單調(diào)性,然后運(yùn)用單調(diào)性定義法來(lái)證明得到結(jié)論。

(2)根據(jù)給定的集合,利用函數(shù)的 圖像得到值域,進(jìn)而判定集合A,B的關(guān)系。

解:(1)f(x)在上為增函數(shù).∵x≥1時(shí),f(x)=1-     對(duì)任意的x1,x2,當(dāng)1≤x1<x2時(shí)f(x1)- f(x2)=(1-)-(1-)=∵x1x2>0,x1-x2<0      ∴      ∴f(x1)< f(x2)∴f(x)在上為增函數(shù).

(2)證明f(x)在上單調(diào)遞減,[1,2]上單調(diào)遞增, 求出A=[0,1]說(shuō)明A=B.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來(lái)源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案