【題目】已知定義域?yàn)?/span>R的函數(shù)是奇函數(shù)。
(1)求a的值.
(2)判斷函數(shù)f(x)在R上的單調(diào)性并證明你的結(jié)論.
(3)求函數(shù)f(x)在R上的值域.
【答案】(1)1;(2)單調(diào)遞增,理由詳見解析;(3)(-1,1).
【解析】
(1)利用求出的值;(2)利用函數(shù)單調(diào)性的定義證明f(x)在R上的單調(diào)性;(3)利用不等式性質(zhì)逐步推理得到函數(shù)函數(shù)f(x)在R上的值域.
(1)由題得,
所以.
經(jīng)檢驗(yàn)當(dāng)時(shí),函數(shù)f(-x)=-f(x),滿足是奇函數(shù),所以.
(2)f(x)在R上單調(diào)遞增.
證明如下:在R上任取,設(shè),則=
又∵3x>0,∴,,
∵單調(diào)遞增
∴,∴,
∴f(x)在R上單調(diào)遞增.
(3),
∵3x+1>1,
∴0<
∴-2<-,
∴f(x)∈(-1,1).
所以函數(shù)f(x)在R上的值域?yàn)椋ǎ?/span>1,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的值域;
(2)當(dāng)時(shí),試討論函數(shù)的單調(diào)性;
(3)若對(duì)任意,存在,使得不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們學(xué)習(xí)了二元基本不等式:設(shè),,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立利用基本不等式可以證明不等式,也可以利用“和定積最大,積定和最小”求最值.
(1)對(duì)于三元基本不等式請(qǐng)猜想:設(shè) 當(dāng)且僅當(dāng)時(shí),等號(hào)成立(把橫線補(bǔ)全).
(2)利用(1)猜想的三元基本不等式證明:
設(shè)求證:
(3)利用(1)猜想的三元基本不等式求最值:
設(shè)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知由正數(shù)組成的等比數(shù)列{an}中,公比q="2," a1·a2·a3·…·a30=245, 則a1·a4·a7·…·a28= ( )
A.25
B.210
C.215
D.220
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)為增函數(shù),當(dāng)x,y∈R時(shí),恒有f(x+y)=f(x)+f(y)
(1)求證:f(x)是奇函數(shù).
(2)是否存在m,使,對(duì)于任意x∈[1,2]恒成立?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)是定義在R上的函數(shù),對(duì)任意實(shí)數(shù)x,有f(1﹣x)=x2﹣3x+3.
(1)求函數(shù)的解析式;
(2)若函數(shù)在g(x)=f(x)﹣(1+2m)x+1(m∈R)在上的最小值為﹣2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下有四個(gè)說(shuō)法:
①若、為互斥事件,則;
②在中,,則;
③和的最大公約數(shù)是;
④周長(zhǎng)為的扇形,其面積的最大值為;
其中說(shuō)法正確的個(gè)數(shù)是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市調(diào)研考試后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào).試求抽到9號(hào)或10號(hào)的概率.
參考公式及數(shù)據(jù):,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com