若a>b,x>y,下列不等式不正確的是


  1. A.
    a+x>b+y
  2. B.
    y-a<x-b
  3. C.
    |a|x≥|a|y
  4. D.
    (a-b)x>(a-b)y
C
分析:這考查有關不等式的四則運算的知識,主要是不要忽略了a等于零的情況.
解答:當a≠0時,|a|>0,不等式兩邊同乘以一個大于零的數(shù),不等號方向不變.
當a=0時,|a|x=|a|y,故|a|x≥|a|y.
故選C.
點評:做此題要考慮全面,特別要注意“零”這個特殊情況.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若存在x0=f(x0),則稱x0為f(x)的不動點.已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)對于任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;
(3)在(2)的條件下若函數(shù)f(x)的圖象上A,B兩點的橫坐標是函數(shù)f(x)的不動點,且A,B兩點關于直線y=kx+
12a2+1
對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的范圍;
(3)在(2)的條件下,若y=f(x)圖象上A、B兩點的橫坐標是函數(shù)f(x)的不動點,且A、B兩點關于直線y=kx+
12a2+1
對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,已知射線OA:x-y=0(x≥0),OB:x+
3
y=0(x≥0),過點P(1,0)作直線分別交射線OA,OB于A,B點.
(1)當AB中點為P時,求直線AB的方程;
(2)在(1)的條件下,若A、B兩點到直線l:y=mx+2的距離相等,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f:A→B是從集合A到B的映射,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(kx,y+b),若B中元素(6,2)在映射f下的原像是(3,1),則A中元素(5,8)在f下的像為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

設f:A→B是從集合A到B的映射,A=B={(x,y)|x∈R,y∈R},f:(x,y)→(kx,y+b),若B中元素(6,2)在映射f下的元素是(3,1),則k,b的值分別為________

查看答案和解析>>

同步練習冊答案