南昌某中學(xué)為了重視國(guó)學(xué)的基礎(chǔ)教育,開設(shè)了A,B,C,D,E共5門選修課,每個(gè)學(xué)生必須且只能選修1門課程課,現(xiàn)有該校的甲、乙、丙、丁4名學(xué)生:
(1)求恰有2門選修課沒有被這4名學(xué)生選擇的概率;
(2)分別求出這4名學(xué)生選擇A選修課的人數(shù)為1和3的概率.
考點(diǎn):離散型隨機(jī)變量的期望與方差,古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:(1)每個(gè)學(xué)生必須且只需選修1門選修課,每一人都有種選擇,總共有54,恰有2門選修課沒有被這4名學(xué)生選擇的概率,則有C52C42A33,從而求解;
(2)某一選修課被這3名學(xué)生選擇的人數(shù)為ξ,則ξ=0,1,2,3,4,分別算出P(ξ=1),P(ξ=3)即可.
解答: 解:(1)每個(gè)學(xué)生必須且只需選修1門選修課,每一人都有5種選擇,總共有54
恰有2門選修課這4個(gè)學(xué)生都沒有選擇的概率,即4名學(xué)生選修了5門中的2門,
先從5門選修課中選出2門,作為沒選修的課程,將4名學(xué)生分為2組,一組2人,另兩組分別1人,最后考慮其順序,
恰有2門選修課沒有被這4名學(xué)生選擇的概率,則有C52C42A33,
則恰有2門選修課這4名學(xué)生都沒選擇的概率:P=
C
2
5
C
2
4
A
3
3
54
=
72
125
;
(2)設(shè)A選修課被這4名學(xué)生選擇的人數(shù)為ξ,
P(ξ=1)=
C
1
4
43
54
=
256
625
,P(ξ=3)=
C
3
4
41
54
=
16
625
點(diǎn)評(píng):本小題主要考查古典概型及其概率計(jì)算,通過設(shè)置密切貼近現(xiàn)實(shí)生活的情境,考查概率思想的應(yīng)用意識(shí)和創(chuàng)新意識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,3,4,5},集合A={1,3,4},集合B={2,4},則(∁UA)∪B為(  )
A、{2,4,5}
B、{1,3,4}
C、{1,2,4}
D、{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線2ax-by+2=0(a>0,b>0)被圓x2+y2+2x-4y+1=0截得的弦長(zhǎng)為4,則
1
a
+
9
b
的最小值為( 。
A、
1
4
B、6
C、12
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+(x-a)2-
a
2
,a∈R.
(Ⅰ)若函數(shù)f(x)在[
1
2
,2]
上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)求函數(shù)f(x)的極值點(diǎn).
(Ⅲ)設(shè)x=m為函數(shù)f(x)的極小值點(diǎn),f(x)的圖象與x軸交于A(x1,0),B(x2,0)(x1<x2)兩點(diǎn),且0<x1<x2<m,AB中點(diǎn)為C(x0,0),求證:f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,且Sn=
an(an+1)
2
(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=-
2Sn
(n+1)•2n
,Tn=b1+b2+…+bn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中a1=0,且對(duì)任意k∈N*,a2k-1,a2k,a2k+1成等差數(shù)列,其公差為2k.
(1)求a2k-1,a2k,以及數(shù)列{an}的通項(xiàng)公式;
(2)記Tn=
22
a2
+
32
a3
+
…+
n2
an
(n≥2),證明:Tn<2n-
3
2
(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3ax+b,(a,b∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)曲線y=f(x)在x=0處的切線方程為3ax+y-2a=0,且y=f(x)與x軸有且只有一個(gè)公共點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高一(1)班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

(Ⅰ)求分?jǐn)?shù)在[50,60)的頻率及全班人數(shù);
(Ⅱ)求分?jǐn)?shù)在[80,90)之間的頻數(shù),并計(jì)算頻率分布直方圖中[80,90)間矩形的高;
(Ⅲ)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份分?jǐn)?shù)在[90,100)之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n=100,則輸出的S=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案