Processing math: 81%
15.△ABC中,sinA:sinB:sinC=4:5:6,.則a:b:c=4:5:6,cosA:cosB:cosC=12:9:2.

分析 由正弦定理得出sinA:sinB:sinC=a:b:c;設(shè)a=4k,b=5k,c=6k,由余弦定理求得cosA、cosB和cosC的值.

解答 解:△ABC中,由正弦定理知,
sinA:sinB:sinC=a:b:c=4:5:6;
設(shè)a=4k:b=5k:c=6k,(其中k≠0),
由余弦定理得cosA=25k2+36k216k22×5k×6k=34,
cosB=16k2+36k225k22×4k×6k=916,
cosC=16k2+25k236k22×4k×5k=18
∴cosA:cosB:cosC=3491618=12:9:2.
故答案為:4:5:6,12:9:2.

點(diǎn)評 本題考查了正弦、余弦定理的靈活應(yīng)用問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列說法正確的有( �。�
(1){an}和{bn}都是等差數(shù)列,則{an+bn}為等差數(shù)列
(2){an}是等差數(shù)列,則am,am+k,am+2k,am+3k,…(k,m∈N+)為等差數(shù)列
(3)若{an}為等比數(shù)列,其中an>0,則{lgan}為等差數(shù)列;若{an}為等差數(shù)列,則{2an}為等比數(shù)列.
(4)若{an}為等比數(shù)列,則{a2n},{|an|}都為等比數(shù)列.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a=11,如果方程ax=logbx,bx=logax,bx=logbx的根分別為x1,x2,x3,則x1,x2,x3的大小關(guān)系為( �。�
A.x3<x1<x2B.x3<x2<x1C.x1<x3<x2D.x1<x2<x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的首項(xiàng)a1=2,前n項(xiàng)和為Sn,3Sn4an23Sn12n2總是成等差數(shù)列.
(1)證明數(shù)列{an}為等比數(shù)列;
(2)求滿足不等式an4n1的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an}中,a3=2,a7=1,若數(shù)列{11+an}是等差數(shù)列,則a11等于( �。�
A.0B.13C.16D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=x3+3ax-1在x=1處的切線與直線y=6x+6平行,則實(shí)數(shù)a=1;
當(dāng)a≤0時,若方程f(x)=15有且只有一個實(shí)根,則實(shí)數(shù)a的取值范圍為-\root{3}{16}<a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量a=12,b=10c=34.若λ為實(shí)數(shù),(\overrightarrow a+λ\overrightarrow b)∥\overrightarrow c,則λ=( �。�
A.2B.1C.\frac{1}{2}D.\frac{1}{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ex-ex-1,其中e為自然對數(shù)的底數(shù).函數(shù)g(x)=(2-e)x.
(1)求函數(shù)h(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若函數(shù)F(x)=\left\{\begin{array}{l}f(x),x≤m\\ g(x),x>m\end{array}\right.的值域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知拋物線方程為y2=4x,點(diǎn)Q的坐標(biāo)為(2,3),P為拋物線上動點(diǎn),則點(diǎn)P到準(zhǔn)線的距離與到點(diǎn)Q的距離之和的最小值為\sqrt{10}

查看答案和解析>>

同步練習(xí)冊答案