求證:0≤a<
4
5
是不等式ax2-ax+1-a>0對一切實數(shù)x都成立的充要條件.
證明:充分性:∵0<a<
4
5
,
∴△=a2-4a(1-a)=5a2-4a=a(5a-4)<0,
則ax2-ax+1-a>0對一切實數(shù)x都成立.
而當a=0時,不等式ax2-ax+1-a>0可變成1>0.
顯然當a=0時,不等式ax2-ax+1-a>0對一切實數(shù)x都成立.
必要性:∵ax2-ax+1-a>0對一切實數(shù)x都成立,
∴a=0或
a>0
△=a2-4a 1-a<0

解得0≤a<
4
5

故0≤a<
4
5
是不等式ax2-ax+1-a>0對一切實數(shù)x都成立的充要條件.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

求證:0≤a<
45
是不等式ax2-ax+1-a>0對一切實數(shù)x都成立的充要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦距是2,離心率是0.5;
(1)求橢圓的方程;
(2)求證:過點A(1,2)傾斜角為45°的直線l與橢圓有兩個不同的交點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)組A:{a1,a2,…,an}與數(shù)組B:{b1,b2,…,bn},A與B中的元素不完全相同,分別從A、B中的n個元素中任取m(m≤n)個元素作和,各得Cnm個和.若由A得到的Cnm個和與由B得到的Cnm個和恰好完全相同,則稱數(shù)組A與B是n元中取m的全等和數(shù)組,簡記為DHnm數(shù)組.
(1)判斷數(shù)組A:{5,15,25,45}與B:{0,20,30,40}是否為DH42數(shù)組?
(2)若數(shù)組A:{a1,a2,…,an}與數(shù)組B:{b1,b2,…,bn}是DHnm數(shù)組(m≤n),求證:數(shù)組A與B一定是DHnn數(shù)組
(3)給定數(shù)組A:{a1,a2,a3,a4},其中a1≤a2≤a3≤a4,問是否存在數(shù)組B,使得數(shù)組A與B為DH42數(shù)組?若存在,則求出數(shù)組B;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年上海市黃浦區(qū)大同中學高三(下)開學摸底數(shù)學試卷(理科)(解析版) 題型:解答題

設(shè)數(shù)組A:{a1,a2,…,an}與數(shù)組B:{b1,b2,…,bn},A與B中的元素不完全相同,分別從A、B中的n個元素中任取m(m≤n)個元素作和,各得Cnm個和.若由A得到的Cnm個和與由B得到的Cnm個和恰好完全相同,則稱數(shù)組A與B是n元中取m的全等和數(shù)組,簡記為DHnm數(shù)組.
(1)判斷數(shù)組A:{5,15,25,45}與B:{0,20,30,40}是否為DH42數(shù)組?
(2)若數(shù)組A:{a1,a2,…,an}與數(shù)組B:{b1,b2,…,bn}是DHnm數(shù)組(m≤n),求證:數(shù)組A與B一定是DHnn數(shù)組
(3)給定數(shù)組A:{a1,a2,a3,a4},其中a1≤a2≤a3≤a4,問是否存在數(shù)組B,使得數(shù)組A與B為DH42數(shù)組?若存在,則求出數(shù)組B;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案