給出如下四個(gè)命題:
①若“p∧q”為假命題,則p,q均為假命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x0∈R,x02+1≤1”
④給出四個(gè)函數(shù)y=x-1,y=x,y=x2,y=x3,則在R上是增函數(shù)的有3個(gè).
其中不正確的命題個(gè)數(shù)是( 。
A、4B、3C、2D、1
考點(diǎn):命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:①利用復(fù)合命題真值表可知①錯(cuò)誤;
②利用命題“若p則q”的否命題為“若¬p則¬q”可判斷②的正誤;
③利用“?x∈R,p”之否定為“?x0∈R,¬p”,可判斷③的正誤;
④依題意,可知四個(gè)函數(shù)y=x-1,y=x,y=x2,y=x3,則在R上是增函數(shù)的有y=x與y=x3,從而可知④之正誤.
解答: 解:①若“p∧q”為假命題,則p,q中至少一個(gè)為假命題,故①錯(cuò)誤;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”正確;
③“?x∈R,x2+1≥1”的否定是“?x0∈R,x02+1<1”,故③錯(cuò)誤;
④四個(gè)函數(shù)y=x-1,y=x,y=x2,y=x3,則在R上是增函數(shù)的有y=x與y=x3,共2個(gè),故④錯(cuò)誤;
綜上所述,不正確的命題個(gè)數(shù)是3個(gè),
故選:B.
點(diǎn)評(píng):本題考查命題的真假判斷與應(yīng)用,考查復(fù)合命題的真假判斷,掌握四種命題間的關(guān)系,否命題與命題的否定的區(qū)別及其真假判斷是關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x+
a
2x
(a∈R)為奇函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足不等式組
x+y≤2
y-x≤2
y≥1
,則
y
x+3
的取值范圍是( 。
A、[0,
2
3
]
B、[
1
4
2
3
]
C、[0,
1
2
]
D、[
1
4
,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行所示的程序框圖,如果輸入a=3,那么輸出的n的值為( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB為圓O的直徑,點(diǎn)C在圓周上(異于點(diǎn)A,B),直線PA垂直于圓O所在的平面,點(diǎn)M為線段PB的中點(diǎn).有以下四個(gè)命題:
①PA∥平面MOB;②MO∥平面PAC;③OC⊥平面PAC;
④平面PAC⊥平面PBC.其中正確的命題是( 。
A、①和②B、②和③
C、③和④D、②和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓錐底面半徑為r,母線長是底面半徑的3倍,在底面圓周上有一點(diǎn)A,求一個(gè)動(dòng)點(diǎn)P自A出發(fā)在側(cè)面上繞一周到A點(diǎn)的最短路程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,短軸長是2.
(1)求a,b的值;
(2)設(shè)橢圓C的下頂點(diǎn)為D,過點(diǎn)D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個(gè)交點(diǎn)分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,當(dāng)
S
|k|
16
9
時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線x=
1
4
y2的焦點(diǎn)與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的一個(gè)焦點(diǎn)重合,F(xiàn)1、F2是橢圓C的左、右焦點(diǎn),Q是橢圓C上任意一點(diǎn),且
QF1
QF2
的最大值是3.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0),使得PM、PN為鄰邊的平行四邊形是菱形?如果存在,求出m的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)O,I分別為△ABC的外心、內(nèi)心,且∠B=60°,AB>BC,∠A的外角平分線交⊙O于D,已知AD=18,則OI=

查看答案和解析>>

同步練習(xí)冊答案