將一段長為100 cm的鐵絲截成兩段,一段彎成圓,一段彎成正方形,問如何截能使正方形與圓面積之和最小,并求出最小面積.

思路分析:分別替彎成圓的一段長為自變量x,正方形與圓的面積之和為因變量S,列出函數(shù)關(guān)系式.利用導數(shù)求出最值.

解:設彎成圓的一段長為x,另一段長為100-x,設正方形與圓的面積之和為S,則S=π((0<x<100),

所以S′=(100-x),

令S′=0,得x=≈44(cm).

由于在(0,100)內(nèi)函數(shù)只有一個導數(shù)為0的點,故當x=時S最小,此時S=.

所以截成圓的一段鐵絲長為時,可使正方形與圓的面積之和最小,最小值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

將一段長為100 cm的鐵絲截成兩段,一段彎成圓,一段彎成正方形,問如何截能使正方形與圓面積之和最小,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一段長為100 cm的鐵絲截成兩段,一段彎成圓,一段彎成正方形.問如何截能使正方形與圓面積之和最小,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一段長為100 cm的鐵絲截成兩段,一段彎成圓,一段彎成正方形,問如何截法使正方形與圓面積之和最小,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一段長為100 cm的鐵絲截成兩段,一段彎成圓形,一段彎成正方形,問如何截法使正方形與圓面積之和最小,并求出最小面積.

查看答案和解析>>

同步練習冊答案