15.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+2≤0\\ x+y-4≤0\\ x+2y-4≥0\end{array}\right.$,則y-2x的最小值為1.

分析 畫出約束條件表示的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最小值即可.

解答 解:根據(jù)方程組獲得可行域如下圖,令z=y-2x,可化為y=2x+z,
因此,當(dāng)直線過點(diǎn)(1,3)時,z取得最小值為1.
故答案為:1.

點(diǎn)評 本題主要考查線性規(guī)劃問題,是一道常規(guī)題.從二元一次方程組到可行域,再結(jié)合目標(biāo)函數(shù)的幾何意義,全面地進(jìn)行考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.A,B,C是△ABC的三個內(nèi)角,若$\overrightarrow{m}$=(sin2$\frac{B+C}{2}$,1),$\overrightarrow{n}$=(-2,cos2A+1),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,則cosA=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$或1D.$\frac{1}{2}$或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.小明、小王、小張、小李4名同學(xué)排成一縱隊表演節(jié)目,其中小明不站排頭,小張不站排尾,則不同的排法共有(  )種.
A.14B.18C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}中,a1=2,a2=6,且數(shù)列{an-1-an}{n∈N*}是公差為2的等差數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)記數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Sn,求滿足不等式Sn>$\frac{2015}{2016}$的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知①x=x-1,②x=x-2,③x=x-3,④x=x-4在如圖所示的程序框圖中,如果輸入x=10,而輸出y=4,則在空白處可填入( 。
A.①②③B.②③C.③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖,為了估測某塔的高度,在同一水平面的A,B兩點(diǎn)處進(jìn)行測量,在點(diǎn)A處測得塔頂C在西偏北20°的方向上,仰角為60°;在點(diǎn)B處測得塔頂C在東偏北40°的方向上,仰角為30°.若A,B兩點(diǎn)相距130m,則塔的高度CD=10$\sqrt{39}$ m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=|lnx|-$\frac{1}{8}$x2的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{{a}^{2}+1}{a}$lnx+$\frac{1}{x}$-x-3(a>1)
(Ⅰ)討論函數(shù)f(x)在(0,1)上的單調(diào)區(qū)間
(Ⅱ)當(dāng)a≥3時,曲線y=f(x)上總存在相異兩點(diǎn)P,Q,使得曲線y=f(x)在P,Q處的切線互相平行,求線段PQ中點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≤0}\\{lnx,x>0}\end{array}\right.$,則f(f($\frac{1}{e}$))=( 。
A.3B.1C.-1D.-3

查看答案和解析>>

同步練習(xí)冊答案