【題目】已知函數(shù)(其中為常數(shù)且

(1)若函數(shù)為減函數(shù),求實數(shù)的取值范圍;

(2)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍,并說明理由.

【答案】(1);(2).

【解析】

1)求出函數(shù)為減函數(shù),等價于,即恒成立,求出的最小值即可得結果;(2,則原命題等價于函數(shù)有兩個不同的零點,分類討論的范圍,分別利用導數(shù)研究函數(shù)的單調(diào)性,結合函數(shù)圖象與零點存在定理,可篩選出符合題意的實數(shù)的取值范圍.

(1)

若函數(shù)為減函數(shù),則,即恒成立.

在區(qū)間上遞減遞增

故實數(shù)的取值范圍是

(2)易知函數(shù)的定義域為

,則原命題等價于函數(shù)有兩個不同的零點,求實數(shù)的取值范圍,

時,函數(shù)在區(qū)間上遞減上遞增,若函數(shù)有兩個不同的零點則必有此時,在上有

上,

在區(qū)間上各有一個零點,故合題意;

時,函數(shù)在區(qū)間遞減,函數(shù)至多一個零點,不合題意;

時,函數(shù)在區(qū)間遞減、遞增、遞減,

函數(shù)的極小值為函數(shù)至多一個零點,不合題意;

時,函數(shù)在區(qū)間遞減、遞增、遞減,

函數(shù)的極小值為

函數(shù)至多一個零點,不合題意.

綜上所述,實數(shù)的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,點,,對角線,交于點P.

1)求直線的方程;

2)若點E,F分別在平行四邊形的邊上運動,且,求的取值范圍;

3)試寫出三角形區(qū)域(包括邊界)所滿足的線性約束條件,若在該區(qū)域上任取一點M,使,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某年數(shù)學競賽邀請了一位來自星球的選手參加填空題比賽,共10道題目,這位選手做題有一個古怪的習慣:先從最后一題(第10題)開始往前看,凡是遇到會的題目就作答,遇到不會的題目先跳過(允許跳過所有的題目),一直看到第1題,然后從第1題開始往后看,凡是遇到先前未答的題目就隨便寫個答案,遇到先前已答得題目則跳過(例如,他可以按照9、87、43、21、56、10的次序答題),這樣所有題目均有作答,則這位選手可能的答題次序有______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關.某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:

品牌

首次出現(xiàn)故

障時間x(年)

0<x≤1

1<x≤2

x>2

0<x≤2

x>2

轎車數(shù)量(輛)

2

3

45

5

45

每輛利潤

(萬元)

1

2

3

1.8

2.9

將頻率視為概率,解答下列問題:

(1)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率.

(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列.

(3)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟效益的角度考慮,你認為應生產(chǎn)哪種品牌的轎車?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是直角梯形,,,M是棱PC上一點,且,平面MBD

1)求實數(shù)λ的值;

2)若平面平面ABCD,為等邊三角形,且三棱錐P-MBD的體積為2,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓為其左右焦點,為其上下頂點,四邊形的面積為.點為橢圓上任意一點,以為圓心的圓(記為圓)總經(jīng)過坐標原點.

(1)求橢圓的長軸的最小值,并確定此時橢圓的方程;

(2)對于(1)中確定的橢圓,若給定圓,則圓和圓的公共弦的長是否為定值?如果是,求的值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知個正整數(shù),它們的平均數(shù)是,中位數(shù)是,唯一眾數(shù)是,則這個數(shù)方差的最大值為__________.(精確到小數(shù)點后一位)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一個數(shù)列的各項是12,首項是1,且在第1和第1之間有2,即1,21,22,12,22,21,2,2,22,22,22,1…,則此數(shù)列的前2017項的和______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班對一次實驗成績進行分析,利用隨機數(shù)表法抽取樣本時,先將50個同學按01,0203…50進行編號,然后從隨機數(shù)表第9行第11列的數(shù)開始向右讀,則選出的第6個個體是( )(注:表為隨機數(shù)表的第8行和第9行)

63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

A.00B.13C.42D.44

查看答案和解析>>

同步練習冊答案