已知y2=2px(p>0)的頂點(diǎn)為O,點(diǎn)A、B在拋物線(xiàn)上,且
OA
OB
=0,|
AB
|=5
13
,直線(xiàn)OA的方程為y=2x,求拋物線(xiàn)的方程.
考點(diǎn):拋物線(xiàn)的標(biāo)準(zhǔn)方程
專(zhuān)題:計(jì)算題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:確定直線(xiàn)OB的方程,兩直線(xiàn)方程分別與拋物線(xiàn)聯(lián)立,求出A,B的坐標(biāo),利用|
AB
|=5
13
,可得p,即可求出拋物線(xiàn)的方程.
解答: 解:∵
OA
OB
=0,直線(xiàn)OA的方程為y=2x,
∴直線(xiàn)OB的方程為y=-
1
2
x,
y=2x與y2=2px聯(lián)立可得A(
p
2
,p),y=-
1
2
x與y2=2px聯(lián)立可得B(8p,-4p),
∵|
AB
|=5
13

(8p-
p
2
)2+(-4p-p)2
=5
13
,
∵p>0,
∴p=2,
∴拋物線(xiàn)的方程為y2=4x.
點(diǎn)評(píng):本題考查拋物線(xiàn)的方程,考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把log232=5化成指數(shù)式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1-2sinx

(1)求f(x)的定義域;
(2)求f(x)的值域及f(x)取最大值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓方程是
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1,F(xiàn)2是它的左、右焦點(diǎn),P是橢圓上任意一點(diǎn),若
PF1
PF2
的取值范圍是[2,3].
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)為A,B,l是橢圓的右準(zhǔn)線(xiàn),P是橢圓上任意一點(diǎn),PA、PB分別交準(zhǔn)線(xiàn)l于M,N兩點(diǎn),求
MF1
NF2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列.
(1)前四項(xiàng)和為21,末四項(xiàng)和為67,且前n項(xiàng)和為286,求n;
(2)若Sn=20,S2n=38,求S3n;
(3)若項(xiàng)數(shù)為奇數(shù),且奇數(shù)項(xiàng)和為44,偶數(shù)項(xiàng)和為33,求數(shù)列中間項(xiàng)和項(xiàng)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中:
①函數(shù)f(x)=lg(x2+mx+m)的值域?yàn)镽,則m∈(0,4);
②若函數(shù)f(x)滿(mǎn)足f(x+1)=
1+f(x)
1-f(x)
,則f(x)為周期函數(shù);
③函數(shù)y=f(2-x)與y=f(2+x)的圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng);
④若函數(shù)f(x)=x+log2(x+
x2+1
)
,則“m+n≥0”是“f(m)+f(n)≥0”的充要條件.
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷下列命題是否正確,正確的說(shuō)明理由,錯(cuò)誤的舉例說(shuō)明:
(1)平面α⊥平面β,平面β⊥平面γ⇒平面α⊥平面γ;
(2)平面α∥平面α1,平面β∥平面β1,平面α⊥平面β⇒平面α1⊥平面β1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用誘導(dǎo)公式求下列三角函數(shù)值.
(1)cos(-
17π
4
);
(2)sin(-2160°52′);
(3)cos1615°8′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),一個(gè)焦點(diǎn)是(1,0),這個(gè)橢圓與直線(xiàn)y=x-1交于A、B兩點(diǎn),若以A、B為直徑的圓過(guò)橢圓左焦點(diǎn),求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案