【題目】函數(shù), .(1)討論的極值點(diǎn)的個(gè)數(shù);(2)若對(duì)于,總有.(i)求實(shí)數(shù)的取值范圍;(ii)求證:對(duì)于,不等式成立.
【答案】(1)當(dāng)時(shí),函數(shù)有兩個(gè)極值點(diǎn);當(dāng)時(shí),函數(shù)沒(méi)有極值點(diǎn). (2)①②見(jiàn)解析
【解析】試題分析:(1)先求函數(shù)導(dǎo)數(shù),轉(zhuǎn)化為研究二次函數(shù)實(shí)根分布:當(dāng),導(dǎo)函數(shù)不變號(hào),無(wú)極值;當(dāng),分時(shí),兩個(gè)正根,有兩個(gè)極值點(diǎn); 時(shí),兩個(gè)負(fù)根,無(wú)極值點(diǎn)(2)①不等式恒成立問(wèn)題利用變量分離轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問(wèn)題: ,再利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,并得最小值,即得實(shí)數(shù)的取值范圍;②由①轉(zhuǎn)化證明,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,可得
試題解析: 解:由題意得 ,令,
(1)當(dāng),即時(shí), 對(duì)恒成立,
即對(duì)恒成立,此時(shí)沒(méi)有極值點(diǎn);
(2)當(dāng),即或,
①時(shí),設(shè)方程兩個(gè)不同實(shí)根為,不妨設(shè),
則, ,故,
或時(shí), ;在時(shí),
故是函數(shù)的兩個(gè)極值點(diǎn).
②時(shí),設(shè)方程兩個(gè)不同實(shí)根為,
則, ,故, ,
時(shí), ;故函數(shù)沒(méi)有極值點(diǎn).
綜上,當(dāng)時(shí),函數(shù)有兩個(gè)極值點(diǎn);
當(dāng)時(shí),函數(shù)沒(méi)有極值點(diǎn).
(2)① , 在 單調(diào)遞減,在 單調(diào)遞增,所以
②只需證明 易得在 單調(diào)遞減,在 單調(diào)遞增, ,得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x-3)ex+ax,aR
(1)當(dāng)a=1時(shí),求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)當(dāng)a[0,e)時(shí),設(shè)函數(shù)f(x)在(1,+)上的最小值為g(a),求函數(shù)g(a)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)校本課程開(kāi)設(shè)了A,B,C,D共4門(mén)選修課,每個(gè)學(xué)生必須且只能選修1門(mén)選修課,現(xiàn)有該校的甲、乙、丙3名學(xué)生.
(1)求這3名學(xué)生選修課所有選法的總數(shù);
(2)求恰有2門(mén)選修課沒(méi)有被這3名學(xué)生選擇的概率;
(3)求A選修課被這3名學(xué)生選擇的人數(shù)ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中國(guó)式過(guò)馬路”是網(wǎng)友對(duì)部分中國(guó)人集體闖紅燈現(xiàn)象的一種調(diào)侃,即“湊夠一撮人就可以走了,和紅綠燈無(wú)關(guān).”出現(xiàn)這種現(xiàn)象是大家受法不責(zé)眾的“從眾”心理影響,從而不顧及交通安全.某校對(duì)全校學(xué)生過(guò)馬路方式進(jìn)行調(diào)查,在所有參與調(diào)查的人中,“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”人數(shù)如表所示:
跟從別人闖紅燈 | 從不闖紅燈 | 帶頭闖紅燈 | |
男生 | 800 | 450 | 200 |
女生 | 100 | 150 | 300 |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n人,已知“跟從別人闖紅燈”的人中抽取45人,求n的值;
(2)在“帶頭闖紅燈”的人中,將男生的200人編號(hào)為1,2,…,200;將女生的300人編號(hào)為201,202,…,500,用系統(tǒng)抽樣的方法抽取4人參加“文明交通”宣傳活動(dòng),若抽取的第一個(gè)人的編號(hào)為100,把抽取的4人看成一個(gè)總體,從這4人中任選取2人,求這兩人均是女生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)袋子中裝有三個(gè)編號(hào)分別為1,2,3的紅球和三個(gè)編號(hào)分別為1,2,3的白球,三個(gè)紅球按其編號(hào)分別記為a1 , a2 , a3 , 三個(gè)白球按其編號(hào)分別記為b1 , b2 , b3 , 袋中的6個(gè)球除顏色和編號(hào)外沒(méi)有任何差異,現(xiàn)從袋中一次隨機(jī)地取出兩個(gè)球,
(1)列舉所有的基本事件,并寫(xiě)出其個(gè)數(shù);
(2)規(guī)定取出的紅球按其編號(hào)記分,取出的白球按其編號(hào)的2倍記分,取出的兩個(gè)球的記分之和為一次取球的得分,求一次取球的得分不小于6的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣cosx+x+1,x∈[0,2π]
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)的極小值和最大值,并寫(xiě)明取到極小值和最大值時(shí)分別對(duì)應(yīng)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,其過(guò)點(diǎn),其長(zhǎng)軸的左右兩個(gè)端點(diǎn)分別為,直線交橢圓于兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線的斜率分別為,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x
(1)討論f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)﹣m在[﹣ ,3]上有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍;
(3)設(shè)函數(shù)h(x)=ex﹣ex+4n2﹣2n(e為自然對(duì)數(shù)的底數(shù)),如果對(duì)任意的x1 , x2∈[ ,2],都有f(x1)≤h(x2)恒成立,求實(shí)數(shù)n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某印刷廠為了研究印刷單冊(cè)書(shū)籍的成本y(單位:元)與印刷冊(cè)數(shù)x(單位:千冊(cè))之間的關(guān)系,在印制某種書(shū)籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見(jiàn)下表:
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到了兩個(gè)回歸方程,甲:
為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):
(1)(。┩瓿上卤恚ㄓ(jì)算結(jié)果精確到0.1):
(ⅱ)分別計(jì)算模型甲與模型乙的殘差平方和及,并通過(guò)比較,的大小,判斷哪個(gè)模型擬合效果更好.
(2)該書(shū)上市后,受到廣大讀者的熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場(chǎng)調(diào)查,新需求量為8千冊(cè)(概率為0.8)或10千冊(cè)(概率為0.2),若印刷廠以沒(méi)測(cè)5元的價(jià)格將書(shū)籍出售給訂貨商,問(wèn)印刷廠二次印刷8千冊(cè)還是10千冊(cè)恒獲得更多的利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書(shū)的成本)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com