設(shè)M為平面內(nèi)一些向量組成的集合,若對(duì)任意正實(shí)數(shù)λ和向量∈M,都有M,則稱(chēng)M為“點(diǎn)射域”,在此基礎(chǔ)上給出下列四個(gè)向量集合:①{(x,y)|y≥x2};②{(x,y)|};③{(x,y)|x2+y2-2y≥0};④{(x,y)|3x2+2y2-12<0}.其中平面向量的集合為“點(diǎn)射域”的序號(hào)是   
【答案】分析:根據(jù)題中“點(diǎn)射域”的定義對(duì)各個(gè)選項(xiàng)依次加以判別,可得①③④都存在反例,說(shuō)明它們不是“點(diǎn)射域”,而②通過(guò)驗(yàn)證可知它符合“點(diǎn)射域”的定義,是正確選項(xiàng).
解答:解:根據(jù)“點(diǎn)射域”的定義,可得向量∈M時(shí),與它共線(xiàn)的向量M也成立,
對(duì)于①,M={(x,y)|y≥x2}表示終點(diǎn)在拋物線(xiàn)y≥x2上及其張口以?xún)?nèi)的向量構(gòu)成的區(qū)域,
向量=(1,1)∈M,但3=(3,3)∉M,故它不是“點(diǎn)射域”;
對(duì)于②,M={(x,y)|},可得任意正實(shí)數(shù)λ和向量∈M,都有M,故它是“點(diǎn)射域”;
對(duì)于③,M={(x,y)|x2+y2-2y≥0},表示終點(diǎn)在圓x2+y2-2y=0上及其外部的向量構(gòu)成的區(qū)域,
向量=(0,2)∈M,但=(0,1)∉M,故它不是“點(diǎn)射域”;
對(duì)于④,M={(x,y)|3x2+2y2-12<0},表示終點(diǎn)在橢圓+=1內(nèi)部的向量構(gòu)成的區(qū)域,
向量=(1,1)∈M,但3=(3,3)∉M,故它不是“點(diǎn)射域”.
綜上所述,滿(mǎn)足是“點(diǎn)射域”的區(qū)域只有②
故答案為:②
點(diǎn)評(píng):本題給出特殊定義,叫我們判斷符合題的選項(xiàng),著重考查集合與元素的關(guān)系和向量的性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M為平面內(nèi)一些向量組成的集合,若對(duì)任意正實(shí)數(shù)λ和向量
a
∈M
,都有λ
a
∈M
,則稱(chēng)M為“點(diǎn)射域”,則下列平面向量的集合為“點(diǎn)射域”的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)設(shè)M為平面內(nèi)一些向量組成的集合,若對(duì)任意正實(shí)數(shù)λ和向量
a
∈M,都有λ
a
M,則稱(chēng)M為“點(diǎn)射域”,在此基礎(chǔ)上給出下列四個(gè)向量集合:①{(x,y)|y≥x2};②{(x,y)|
x-y≥0
x+y≤0
};③{(x,y)|x2+y2-2y≥0};④{(x,y)|3x2+2y2-12<0}.其中平面向量的集合為“點(diǎn)射域”的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)M為平面內(nèi)一些向量組成的集合,若對(duì)任意正實(shí)數(shù)t和向量a∈M,都有ta∈M,則稱(chēng)M為“點(diǎn)射域”.現(xiàn)有下列平面向量的集合:
①{(x,y)|x2≥y};
②{(x,y)|
x+y≥0
x+y≤0
};
③{(x,y)|x2+y2-2x≥0};
④{(x,y)|3x2+2y2-6<0}.
上述為“點(diǎn)射域”的集合有
(寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•肇慶一模)設(shè)M為平面內(nèi)一些向量組成的集合,若對(duì)任意正實(shí)數(shù)λ和向量a∈M,都有λa∈M,則稱(chēng)M為“點(diǎn)射域”,則下列平面向量的集合為“點(diǎn)射域”的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年高考數(shù)學(xué)復(fù)習(xí)卷C(八)(解析版) 題型:填空題

設(shè)M為平面內(nèi)一些向量組成的集合,若對(duì)任意正實(shí)數(shù)t和向量a∈M,都有ta∈M,則稱(chēng)M為“點(diǎn)射域”.現(xiàn)有下列平面向量的集合:
①{(x,y)|x2≥y};
②{(x,y)|};
③{(x,y)|x2+y2-2x≥0};
④{(x,y)|3x2+2y2-6<0}.
上述為“點(diǎn)射域”的集合有    (寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案