分析:(Ⅰ)依題意得,y′=2x,于是可求曲線C在點(diǎn)M
n(a
n,
)處的切線方程為y=2a
n(x-a
n)+
,當(dāng)n=1時,切線過點(diǎn)P(1,0),解得a
1=2;當(dāng)n>1時,切線過點(diǎn)P
n-1(a
n-1,0),從而可得a
n與a
n-1(n≥2)的關(guān)系式;
(Ⅱ)由(Ⅰ)知數(shù)列{a
n}的通項(xiàng)公式為a
n=2
n,而b
n=
,S
n=
+
+
+…+
,利用錯位相減法即可求得數(shù)列{b
n}的前n項(xiàng)和.
解答:解:(Ⅰ)對y=x
2求導(dǎo),得y′=2x,
∴曲線C在點(diǎn)M
n(a
n,
)處的切線方程是y=2a
n(x-a
n)+
,由已知得a
n>0,
當(dāng)n=1時,切線過點(diǎn)P(1,0),
∴2a
1(1-a
1)+
=0,解得a
1=2;
當(dāng)n>1時,切線過點(diǎn)P
n-1(a
n-1,0),
同理可得得a
n=2a
n-1,
∴數(shù)列{a
n}是首項(xiàng)a
1=2,公比q=2的等比數(shù)列,
∴數(shù)列{a
n}的通項(xiàng)公式為a
n=2
n.
(Ⅱ)∵a
n=2
n,b
n=
,
∴S
n=
+
+
+…+
①,
∴
S
n=
+
+
+…+
②,
①-②得:
S
n=
+
+…+
-
=
-
=1-
-
,
∴S
n=2-
.
點(diǎn)評:本題考查數(shù)列的求和,著重考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查等比數(shù)列關(guān)系的確定及通項(xiàng)公式的應(yīng)用,突出考查錯位相減法求和,屬于中檔題.