已知函數(shù)f(x)=ax+(
lgx
lg3
)(a∈R且a>1)在區(qū)間[1,2]的最大值與最小值之差為2+(
lg2
lg3
),則實(shí)數(shù)a的值為
 
考點(diǎn):函數(shù)單調(diào)性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:確定函數(shù)在區(qū)間[1,2]上是增函數(shù),利用在區(qū)間[1,2]的最大值與最小值之差為2+(
lg2
lg3
),可得a2-a=2,由此解得a的值.
解答: 解:∵函數(shù)f(x)=ax+(
lgx
lg3
)(a∈R且a>1),
∴函數(shù)在(0,+∞)上是增函數(shù),
∴函數(shù)在區(qū)間[1,2]上是增函數(shù),
∴a2+
lg2
lg3
-a=2+(
lg2
lg3
),
∴a2-a=2,
解得 a=2,
故答案為:2.
點(diǎn)評(píng):本題主要考查利用函數(shù)的單調(diào)性求函數(shù)的最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1,ACC1A1均為正方形,∠BAC=90,點(diǎn)D是棱B1C1的中點(diǎn).
(1)求證AB1∥平面A1DC;
(2)求AC與平面A1DC所成角的正弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式ax2+bx-1<0的解集為{x|-1<x<2},則a、b分別為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點(diǎn),若雙曲線左支上存在一點(diǎn)M,使
.
F1M
•(
.
OM
+
.
OF1
)
=0,O為坐標(biāo)原點(diǎn),且|MF1|=
3
3
|MF2|,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x+2)=-f(x),則f(12)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x),對(duì)任意x∈R,都有f(x+2)=-f(x)+f(1)成立,若函數(shù)y=f(x+1)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知S100=10,S200=100,則S300=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
1
3
,an2+2an-2an+1=0,用[x]表示不超過x的最大整數(shù),則[
1
a1+2
+
1
a2+2
+
1
a3+2
+…+
1
a2014+2
]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)離散型隨機(jī)變量ξ的概率分布列如表,則下列各式中成立的是(  )
ξ-10123
P0.10a0.100.200.40
A、P(ξ<1.5)=0.4
B、P(ξ>-1)=1
C、P(ξ<3)=1
D、P(ξ<0)=0

查看答案和解析>>

同步練習(xí)冊(cè)答案