【題目】在△中,已知,直線經(jīng)過點

(Ⅰ)若直線:與線段交于點,且為△的外心,求△的外接圓的方程;

(Ⅱ)若直線方程為,且△的面積為,求點的坐標.

【答案】(Ⅰ) (Ⅱ)

【解析】

(Ⅰ)先求出直線的方程,進而得到D點坐標,為直徑長,從而得到△的外接圓的方程;

(Ⅱ)由題意可得,從而解得點的坐標.

(Ⅰ)解法一:由已知得,直線的方程為,

聯(lián)立方程組得:,解得

,△的外接圓的半徑為

∴△的外接圓的方程為

解法二:由已知得,,且為△的外心,∴△為直角三角形,為線段的中點,∴圓心,圓的半徑,

∴△的外接圓的方程為.

或線段即為△的外接圓的直徑,故有△的外接圓的方程為,即

(Ⅱ)設點的坐標為,由已知得,,

所在直線方程,

到直線的距離,①

又點的坐標為滿足方程,即

聯(lián)立①②解得:

∴點的坐標為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為落實國家“精準扶貧”政策,讓市民吃上放心蔬菜,某企業(yè)于2017年在其扶貧基地投入100萬元研發(fā)資金,用于蔬菜的種植及開發(fā),并計劃今后十年內在此基礎上,每年投入的資金比上一年增長

(1)寫出第年(2018年為第一年)該企業(yè)投入的資金數(shù)(萬元)與的函數(shù)關系式,并指出函數(shù)的定義域

(2)該企業(yè)從第幾年開始(2018年為第一年),每年投入的資金數(shù)將超過200萬元?(參考數(shù)據(jù),)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=ln4-x+1n2+x)的單調遞增區(qū)間為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線方程為

(1)求的值;

(2)求上的單調區(qū)間;

(3)求上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,討論函數(shù)零點的個數(shù);

(2)若,當=1時,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該產(chǎn)品在試銷一個階段后得到銷售單價(單位:元)和銷售量(單位:萬件)之間的一組數(shù)據(jù),如下表所示:

銷售單價/元

9

9.5

10

10.5

11

銷售量/萬件

11

10

8

6

5

(1)根據(jù)表中數(shù)據(jù),建立關于的回歸方程;

(2)從反饋的信息來看,消費者對該產(chǎn)品的心理價(單位:元/件)在內,已知該產(chǎn)品的成本是元/件(其中),那么在消費者對該產(chǎn)品的心理價的范圍內,銷售單價定為多少時,企業(yè)才能獲得最大利潤?(注:利潤=銷售收入-成本)

參考數(shù)據(jù):.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測投資類產(chǎn)品的收益與投資額成正比,投資類產(chǎn)品的收益與投資額的算術平方根成正比已知投資1萬元時兩類產(chǎn)品的收益分別為0125萬元和05萬元

1分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關系;

2該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知在等腰梯形中,,,=60°,沿折成三棱柱

(1)若,分別為,的中點,求證:∥平面;

(2)若,求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(a、b∈R,a、b為常數(shù)),且y=f(x)在x=1處切線方程為y=x﹣1.
(1)求a,b的值;
(2)設h(x)= , k(x)=2h′(x)x2 , 求證:當x>0時,k(x)<+

查看答案和解析>>

同步練習冊答案