函數(shù)f(x)=e1-x2的部分圖象大致是( ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-7練習(xí)卷(解析版) 題型:選擇題
已知a,b,c是實(shí)數(shù),給出下列四個(gè)命題:①若a>b,則 ;②若a>b,且k∈N*,則ak>bk;③若ac2>bc2,則a>b;④若c>a>b>0,則其中正確的命題的序號是( ).
A.①④ B.①②④ C.③④ D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-4練習(xí)卷(解析版) 題型:選擇題
當(dāng)x=時(shí),函數(shù)f(x)=Asin (x+φ)(A>0)取得最小值,則函數(shù)y=f是( ).
A.奇函數(shù)且圖象關(guān)于點(diǎn)對稱
B.偶函數(shù)且圖象關(guān)于點(diǎn)(π,0)對稱
C.奇函數(shù)且圖象關(guān)于直線x=對稱
D.偶函數(shù)且圖象關(guān)于點(diǎn)對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-3練習(xí)卷(解析版) 題型:選擇題
設(shè)函數(shù)f(x)=+ln x,則( ).
A.x=為f(x)的極大值點(diǎn)
B.x=為f(x)的極小值點(diǎn)
C.x=2為f(x)的極大值點(diǎn)
D.x=2為f(x)的極小值點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-2練習(xí)卷(解析版) 題型:填空題
若函數(shù)f(x)為奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2+x,則f(-2)的值______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-2練習(xí)卷(解析版) 題型:選擇題
函數(shù)的定義域是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-1練習(xí)卷(解析版) 題型:選擇題
下列說法錯(cuò)誤的是:( ).
A.命題“若x2-4x+3=0,則x=3”的逆否命題是“若x≠3”,則x2-4x+3≠0”
B.“x>1”是“|x|>0”的充分不必要條件
C.若p∧q為假命題,則p,q均為假命題
D.命題p:“?x∈R,使得x2+x+1<0”,則綈p:“?x∈R,x2+x+1≥0”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)體系通關(guān)訓(xùn)練1-11練習(xí)卷(解析版) 題型:選擇題
某農(nóng)場有如圖所示的六塊田地,現(xiàn)有蘿卜、玉米、油菜三類蔬菜可種.為有利于作物生長,要求每塊田地種一類蔬菜,每類蔬菜種兩塊田地,每行、每列的蔬菜種類各不相同,則不同的種植方法數(shù)為( ).
|
|
|
|
|
|
A.12 B.16 C.18 D.24
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評7練習(xí)卷(解析版) 題型:填空題
由正整數(shù)組成的一組數(shù)據(jù)x1,x2,x3,x4,其平均數(shù)和中位數(shù)都是2,且標(biāo)準(zhǔn)差等于1,則這組數(shù)據(jù)為________.(從小到大排列)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com